98%
921
2 minutes
20
Although microplastics (MPs) are widely recognized as carriers of environmental pollutants, their impact on the adsorption behavior of chlorophenols (CPs) by river-suspended sediments (SS) remains poorly understood. This study systematically investigated the effects of three common MPs (PVC, PS, and PE) on the adsorption of 4-chlorophenol (MCP), 2,4-dichlorophenol (2,4-DCP), and 2,4,6-trichlorophenol (2,4,6-TCP) by SS from the Yellow River. Adsorption isotherms revealed that PVC significantly promoted CP adsorption, fitting well with the Langmuir model (R² > 0.95), whereas PS and PE showed better agreement with the Freundlich model (R² > 0.96). The enhancement effect varied with MP type and CP species, with PVC demonstrating the most pronounced promotion (65% increase for 2,4,6-TCP). Conversely, PS and PE hindered 2,4-DCP adsorption due to its higher partition coefficient in SS (36.83 ± 6.3 L/kg) compared to MPs (1.85 ± 0.01 L/kg for PS and 2.03 ± 0.05 L/kg for PE). Environmental factor analysis revealed that ionic strength exerted dual effects by initially enhancing CP adsorption through reduced solubility and later inhibiting it via electrostatic repulsion. Humic acid (HA) promoted TCP adsorption but inhibited DCP adsorption through aggregation and dispersal mechanisms on SS surfaces. Acidic conditions (pH 2-6) significantly enhanced CP adsorption by maintaining their molecular states, while alkaline conditions reduced adsorption due to electrostatic repulsion. Mechanistically, MPs altered SS surface properties and formed aggregates that either facilitated or competed for CP adsorption sites. This study provides a theoretical basis for ecological risk assessment of combined microplastic-pollutant contamination in sediment-laden rivers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00267-025-02169-3 | DOI Listing |
J Med Case Rep
September 2025
Department of Anesthesiology, LMU University Hospital Munich LMU, Marchioninistrasse 15, 81377, Munich, Germany.
Background: The treatment of critically ill patients in intensive care units is becoming increasingly complex. For example, organ transplants are regularly carried out, the recipients are seriously ill, and the postoperative course can be complicated. This is why organ replacement and hemadsorption procedures are becoming increasingly important.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia.
Ciprofloxacin (CIP), a widely used fluoroquinolone antibiotic, has become a significant contaminant in aquatic environments due to its extensive use and incomplete metabolism. This review comprehensively analyses CIP pollution, including its sources, environmental and health impacts, and removal strategies. Chemical methods such as advanced oxidation processes and physical techniques like adsorption are evaluated for their efficiency in CIP removal.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2025
Department of Dyes and Chemical Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh.
This study quantitatively evaluated the adsorption performance of natural bentonite for removing three dye classes-cationic (Basic dye: BEZACRYL RED GRL), anionic (Reactive dye: AVITERA LIGHT RED SE), and non-ionic (Disperse dye: BEMACRON BLUE HP3R) from synthetic textile wastewater. Batch adsorption experiments were conducted under varying conditions of contact time (15-90 min), adsorbent dosage (20-60 g L⁻), pH (4 and 12), and temperature (25-100 °C), with dye concentrations quantified by UV-Vis spectroscopy. At a contact time of 30 min and room temperature (25 °C), maximum removal efficiencies reached 99.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
School of Geological Survey, China University of Geosciences, Wuhan, 430074, China.
Cadmium (Cd) contamination in water poses a critical global challenge. A novel nanocomposite, montmorillonite (Mt)-supported nanoscale zero-valent iron (Mt-nZVI), synthesized by liquid phase reduction, offers a promising method for effectively removing Cd. The material underwent characterization through various techniques, including X-ray diffraction (XRD) and Scanning Electron Microscope(SEM).
View Article and Find Full Text PDFAnal Chem
September 2025
Institute of Digitized Medicine and Intelligent Technology, Wenzhou Medical University, Wenzhou 325000, P. R. China.
Surface-enhanced Raman spectroscopy (SERS) has shown potential for early disease diagnosis via urinary metabolomics, but still faces challenges in achieving stable hot spots and processing complex clinical data. In this study, the preparation of chiral gold nanostars with precisely controllable branch size, number, and sharpness was realized by investigating the effects of l-GSH and CTA ( indicates halides) on site occupancy, reduction rate, and selective adsorption on crystal facets. Raman spectroscopic characterization using rhodamine 6G (R6G) as a reporter molecule revealed that nanoparticles with fewer branches, larger branch bases, and smoother surfaces exhibited excellent SERS activity, with an analytical enhancement factor (AEF) of 5.
View Article and Find Full Text PDF