The mechanism of action of GLUT1 in promoting NETs-mediated impairment of macrophage phenotypic switching based on macrophage-fibroblast interplay.

Cytokine

Department of Burn and Plastic Surgery, No.969 Hospital, Joint Logistics Support Force of the Chinese People's Liberation Army., China. Electronic address:

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study explored the mechanism by which glucose transporter type 1 (GLUT1) promotes neutrophil extracellular trap (NET)-mediated macrophage phenotype conversion in a high-glucose environment, based on the interaction between fibroblasts and macrophages. We demonstrated that GLUT1 plays an important role in immune cell-fibroblast crosstalk. High glucose induces GLUT1 to upregulate high mobility group box 1 (HMGB1) levels, thereby promoting NET release and macrophage M1 polarization. Addition of a NET inhibitor promoted macrophage M2 polarization and alleviated the impaired macrophage phenotype conversion. Additionally, overexpression of Glut1 enhanced the expression of inflammatory factors tumor necrosis factor alpha (TNF-α) and interleukin beta (IL-1β), leading to inflammatory damage to fibroblasts, which was reversed significantly by inhibiting NETs . The results indicated that GLUT1 mediates the crosstalk between NETs, macrophage phenotype conversion impairment, and inflammatory damage in fibroblasts. This study emphasizes the importance of GLUT1 in the interaction between immune cells and fibroblasts, and its regulatory role in the impairment of NET-mediated macrophage phenotype conversion. These findings suggest that the regulatory mechanisms between HMGB1 and NETs in a high-glucose environment might provide potential therapeutic targets to treat diabetic wounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cyto.2025.156946DOI Listing

Publication Analysis

Top Keywords

macrophage phenotype
16
phenotype conversion
16
net-mediated macrophage
8
high-glucose environment
8
macrophage polarization
8
inflammatory damage
8
damage fibroblasts
8
glut1
7
macrophage
7
mechanism action
4

Similar Publications

Resolve and regulate: Alum nanoplatform coordinating STING availability and agonist delivery for enhanced anti-tumor immunotherapy.

Biomaterials

September 2025

Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China. Electronic address:

The stimulator of interferon genes (STING) pathway represents a promising target in cancer immunotherapy. However, the clinical translation of cyclic dinucleotide (CDN)-based STING agonists remains hindered by insufficient formation of functional CDN-STING complexes. This critical bottleneck arises from two interdependent barriers: inefficient cytosolic CDN delivery and tumor-specific STING silencing via DNA methyltransferase-mediated promoter hypermethylation.

View Article and Find Full Text PDF

Cathepsin Z is a conserved susceptibility factor underlying tuberculosis severity.

PLoS Biol

September 2025

Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America.

Tuberculosis (TB) outcomes vary widely, from asymptomatic infection to mortality, yet most animal models do not recapitulate human phenotypic and genotypic variation. The genetically diverse Collaborative Cross mouse panel models distinct facets of TB disease that occur in humans and allows identification of genomic loci underlying clinical outcomes. We previously mapped a TB susceptibility locus on mouse chromosome 2.

View Article and Find Full Text PDF

Impaired muscle regrowth in aging is underpinned by reduced pro-inflammatory macrophage function and subsequently impaired muscle cellular remodeling. Macrophage phenotype is metabolically controlled through TCA intermediate accumulation and activation of HIF1A. We hypothesized that transient hypoxia following disuse in old mice would enhance macrophage metabolic inflammatory function thereby improving muscle cellular remodeling and recovery.

View Article and Find Full Text PDF

Radiation-induced skin injury (RSI) remains a significant clinical challenge due to persistent oxidative stress, chronic inflammation, and impaired tissue regeneration. It is demonstrated that RSI is accompanied by dysregulation of the immune microenvironment, wherein macrophages act as key regulators of all pathological cascades. Here, we developed a dual network hydrogel (Gel/SA@MXene) through dual cross-linking via UV irradiation and calcium ions to accelerate radiation-combined wound healing.

View Article and Find Full Text PDF

Single-cell transcriptome combined with genetic tracing reveals a roadmap of fibrosis formation during proliferative vitreoretinopathy.

Proc Natl Acad Sci U S A

September 2025

Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Ocular Trauma, Laboratory of Molecular Ophthalmology, Tianjin Medical Univer

Ocular fibrosis, a severe consequence of excessive retinal wound healing, can lead to vision loss following retinal injury. Proliferative vitreoretinopathy (PVR), a common form of ocular fibrosis, is a major cause of blindness, characterized by the formation of extensive fibrous proliferative membranes. Understanding the cellular origins of PVR-associated fibroblasts (PAFs) is essential to decipher the mechanisms of ocular wound healing.

View Article and Find Full Text PDF