98%
921
2 minutes
20
Implant-associated infections (IAIs) represent the primary cause of prosthetic implant failure. Bacterial biofilms hinder the host's immune response, creating ″immune cold zones.″ ″Immune activation therapy″ presents a viable strategy for addressing IAIs. Nonetheless, focusing solely on regulating innate immune cells like macrophages falls short for effective antibiofilm outcomes. Herein, a multifunctional antimicrobial system capable of utilizing ultrasound (US)-induced tandem catalysis and activating innate and adaptive antimicrobial immune responses is proposed. The integration of piezoelectric barium titanate with STING plasmids both encapsulated in liposomes and embedded in hydrogel microspheres. US activation generates reactive oxygen species, effectively destroying biofilms and subsequently exposing bacterial antigens. US can destroy liposomes and release STING plasmids, thereby activating the cGAS-STING pathway and triggering antimicrobial innate immunity. Additionally, it can also induce DC maturation, enhance bacterial antigen presentation, alleviate immunosuppression, and boost adaptive immunity. This study proposes a promising strategy combining antimicrobial and immunotherapy, offering an alternative to antibiotics for IAI treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.4c16606 | DOI Listing |
Regen Biomater
August 2025
College of Textiles & Clothing, Institute of Functional Textiles and Advanced Materials, Qingdao 266071, China.
Bacterial infection in the injured skin may threaten the wound repair and skin regeneration owing to aggravated inflammation. The multifunctional dressings with persistent antibacterial activity and improved anti-inflammatory capability are urgently required. Herein, a type of heterogeneous zinc/catechol-derived resin microspheres (Zn/CFRs) composed of zinc ions (Zn) and zinc oxide (ZnO) nanoparticles was developed to impart the methacrylamide chitosan (CSMA)-oxidized hyaluronic acid (OHA) hydrogel with a persistent Zn release behavior.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China.
Osteoarthritis (OA) is a common degenerative joint disease, and early diagnosis and effective treatment are essential for managing its progression. This study focuses on the development of a novel drug delivery system using aggregation-induced emission (AIE) probe for enhanced fluorescence imaging and targeted therapy in OA. TPE-S-BTD, an AIE probe, is synthesized and characterized for its photophysical properties, demonstrating significant aggregation-induced fluorescence enhancement.
View Article and Find Full Text PDFAdv Drug Deliv Rev
September 2025
State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China; Shanghai Key Laboratory of Cancer System Regulation and Clinical Translation, Jiading District Central Hospital, Renji Hospital J
DNA exhibits remarkable versatility, which is attributed to its inherent molecular recognition capabilities, programmable sequences, and excellent biocompatibility. Among its various topological forms, branched DNA (bDNA), including Y-shaped DNA (Y-DNA), X-shaped DNA (X-DNA), etc., stands out as a fundamental building block for fabricating functional DNA-based materials and has demonstrated great promise across diverse applications in recent years.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China.
Diabetic wounds are characterized by complex pathologies, such as vascular changes, nerve damage, and immune dysfunction, which make healing difficult. Hydrogel microspheres have shown great potential in the field of wound treatment due to their excellent biocompatibility, high water content, and soft physical properties. The review summarizes the preparation methods of hydrogel microspheres in detail, including microfluidic technology, spray method, electro spraying, emulsion method, phase separation, photomask method, and 3D printing technology.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
Jinling Clinical Medical College, Nanjing University of Chinese Medicine, 305 East Zhongshan Road, Nanjing 210002, P.R. China.
Research on liposome-composite hydrogel microspheres (LHMs) drug delivery systems, primarily composed of drugs, liposomes, and hydrogels, has garnered growing scientific interest. LHMs exhibit biosafety, modifiability, a wide range of loaded drug categories (water-soluble or fat-soluble), controlled and sustainable drug release capability, and specific cell-targeted performance, which compensate for the shortcomings of conventional drug delivery methods due to the complementary advantages of liposome and hydrogel microspheres. In this review, we systematically analyze the existing literature on LHMs and provide a comprehensive overview of their preparation methods.
View Article and Find Full Text PDF