98%
921
2 minutes
20
Decoding the molecular mechanisms of insect resistance to Bacillus thuringiensis (Bt) toxins is crucial for the sustainable utilization of Bt-based bioinsecticides and transgenic crops. Our previous studies showed that a hormone-responsive transcription factor FOXO binds to an inserted short interspersed nuclear element (SINE, named SE2), causing MAP4K4 overexpression and resistance to Bt Cry1Ac toxin in Plutella xylostella. Furthermore, titers of two upstream signaling hormones (20-hydroxyecdysone and juvenile hormone) were also found to be elevated in the resistant strain, but it was unclear whether this was due to natural variation or a feedback pathway. Here, we established a homozygous knock-in strain (SE2-KI) using a reverse genetic approach to insert the SE2 retrotransposon into the MAP4K4 promoter of a Cry1Ac-susceptible strain. The SE2 insertion induced MAP4K4 overexpression, which in turn caused a downregulation of midgut receptors and an identical resistance phenotype to that seen in the evolved resistant strain. Moreover, SE2 insertion significantly increased the levels of two insect hormones providing definitive evidence for a positive feedback regulatory pathway. This study unveils an as yet uncharacterized hormonal regulatory feedback pathway orchestrating Cry1Ac resistance in P. xylostella, providing new insights into the molecular basis of Bt resistance and informing suitable field resistance management strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pestbp.2025.106382 | DOI Listing |
J Dent Educ
September 2025
Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, P. R. China.
Background: Virtual reality (VR) and artificial intelligence (AI) technologies have advanced significantly over the past few decades, expanding into various fields, including dental education.
Purpose: To comprehensively review the application of VR and AI technologies in dentistry training, focusing on their impact on cognitive load management and skill enhancement. This study systematically summarizes the existing literature by means of a scoping review to explore the effects of the application of these technologies and to explore future directions.
Pestic Biochem Physiol
November 2025
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China; Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China; China France
Developing a practical strategy to enhance the quality of medicinal herb while alleviating negative plant-soil feedback (NPSF) is critical for agriculture. In this study, we investigated the effects of selenium nanoparticles (SeNPs) on Panax notoginseng through a two-year field experiment. Four treatments were established: a control (SeNPs_0) and three SeNPs concentrations (3, 5, and 10 mg/L), which were foliar-sprayed every 15 days for a total of six applications.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, College of Plant Protection, Southwest University, Chongqing 400715, China. Electronic address:
The innovative fungus-mite collaborative control strategy based on the high resistance of predatory mites to entomopathogenic fungi offers significant advantages. However, the resistance mechanisms of predatory mites to entomopathogenic fungi remain poorly characterized. Additionally, the pathogenic and lethal risks of broad-spectrum entomopathogenic fungi to predatory mites pose constraints on their application.
View Article and Find Full Text PDFFungal Biol
October 2025
Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA. Electronic address:
In many model organisms, the circadian system has been proposed to comprise multiple oscillators that interact to promote accuracy of the clock as well as intricacies of rhythmic outputs. In Neurospora crassa, the circadian transcriptional/translational loop comprising of the FRQ (Frequency) and WCC (White Collar Complex) proteins has been instrumental in explaining many attributes of the clock including entrainment and rhythms in development and gene expression; in addition, some non-circadian oscillations can be unmasked when the FRQ-WCC feedback loop is eliminated. These rhythms have often lost defining circadian characteristics and are potentially controlled by other oscillators, termed FRQ-less oscillators (FLOs) in Neurospora.
View Article and Find Full Text PDFCell Rep
September 2025
Department of Biology, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA; Biology of Adversity Project, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Elect
The neural control of breathing is both dynamic and essential, ensuring life-sustaining gas exchange while protecting the respiratory system from harm. Peripheral neurons innervating the respiratory tract exhibit remarkable diversity, continuously relaying sensory feedback to the brain to regulate breathing, trigger protective reflexes such as coughing and sickness behaviors, and even influence emotional states. Understanding this airway-brain axis is especially critical given the increasing global burden of respiratory diseases, as it holds implications for both human health and broader brain-body interactions.
View Article and Find Full Text PDF