Modulation of premotor cortex excitability mitigates the behavioral and electrophysiological abnormalities in a Parkinson's disease mouse model.

Prog Neurobiol

Laboratory of Neurophysiology, Sensory and Motor Neuroscience Group, Korea Brain Research Institute, Daegu 41602, Republic of Korea; Brain Engineering Convergence Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea; Department of Brain Science

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The subthalamic nucleus (STN) plays a crucial role in suppressing prepotent response tendency. The prefrontal regions innervating the STN exhibit increased activity during the stop-signal responses, and the optogenetic activation of these neurons suppresses ongoing behavior. High-frequency electrical stimulation of the STN effectively treats the motor symptoms of Parkinson's disease (PD), yet its underlying circuit mechanisms remain unclear. Here, we investigated the involvement of STN-projecting premotor (M2) neurons in PD mouse models and the impact of deep brain stimulation targeting the STN (DBS-STN). We found that the M2 neurons exhibited enhanced burst firing and synchronous oscillations in the PD mouse model. Remarkably, high-frequency stimulation of STN-projecting M2 neurons, simulating antidromic activation during DBS-STN relieved motor symptoms and hyperexcitability. These changes were attributed to reduced firing frequency vs. current relationship through normalized hyperpolarization-activated inward current (Ih). The M2 neurons in the PD model mouse displayed increased Ih, which was reversed by high-frequency stimulation. Additionally, the infusion of ZD7288, an HCN channel blocker, into the M2 replicated the effects of high-frequency stimulation. In conclusion, our study reveals excessive excitability and suppressive motor control through M2-STN synapses in a PD mouse model. Antidromic excitation of M2 neurons during DBS-STN alleviates this suppression, thereby improving motor impairment. These findings provide insights into the circuit-level dynamics underlying deep brain stimulation's therapeutic effects in PD, suggesting that M2-STN synapses could serve as potential targets for future therapeutic strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pneurobio.2025.102761DOI Listing

Publication Analysis

Top Keywords

mouse model
12
high-frequency stimulation
12
parkinson's disease
8
motor symptoms
8
deep brain
8
m2-stn synapses
8
neurons
6
mouse
5
stimulation
5
modulation premotor
4

Similar Publications

Background: Laboratory animal veterinarians play a crucial role as a bridge between the ethical use of laboratory animals and the advancement of scientific and medical knowledge in biomedical research. They alleviate pain and reduce distress through veterinary care of laboratory animals. Additionally, they enhance animal welfare by creating environments that mimic natural habitats through environmental enrichment and social associations.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.

View Article and Find Full Text PDF

Transcriptional condensates enrich phosphorylated PRMT2 to stimulate H3R8me2a deposition and hypoxic response in glioblastoma.

Sci China Life Sci

September 2025

State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University Cancer Institute and Hospital, Tianjin Key Labora

Histone arginine methylation by protein arginine methyltransferases (PRMTs) is crucial for transcriptional regulation and is implicated in cancers. Despite their therapeutic potential, some PRMTs present challenges as drug targets due to their context-dependent activities. Here, we demonstrate that hypoxia triggers the rapid condensation of PRMT2, which is essential for its histone H3R8 asymmetric dimethylation (H3R8me2a) activity.

View Article and Find Full Text PDF

Background: Activin A/Smad signaling plays an important role in promoting cancer stemness and chemoresistance in pancreatic ductal adenocarcinoma (PDAC), however the precise regulation on the termination of this pathway has not been fully understood.

Methods: LncRNA SLC7A11-AS1 interacting proteins were identified through RNA pull-down followed by LC-MS/MS. The protein interaction was analyzed by co-immunoprecipitation.

View Article and Find Full Text PDF

Manipulating Zika virus RNA tertiary structure for developing tissue-specific attenuated vaccines.

EMBO Mol Med

September 2025

State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, 100071, Beijing, China.

Traditional live attenuated vaccines (LAVs) are typically developed through serial passaging or genetic engineering to introduce specific mutations or deletions. While viral RNA secondary or tertiary structures have been well-documented for their multiple functions, including binding with specific host proteins, their potential for LAV design remains largely unexplored. Herein, using Zika virus (ZIKV) as a model, we demonstrate that targeted disruption of the primary sequence or tertiary structure of a specific viral RNA element responsible for Musashi-1 (MSI1) binding leads to a tissue-specific attenuation phenotype in multiple animal models.

View Article and Find Full Text PDF