The resistance risk of fluopicolide and resistance-associated point mutations in the target protein PlVHA-a in Phytophthora litchii.

Stress Biol

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling , Shaanxi, 712100, China.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Litchi, a fruit that is highly sought-after worldwide, faces significant yield challenges due to litchi downy blight, primarily caused by Phytophthora litchii. Fluopicolide has exhibited remarkable efficacy in inhibiting this pathogen and is utilized for the management of litchi downy blight. Although understanding the resistance of P. litchii to fluopicolide is critical, studies on its risk and mechanisms remain limited. In this study, we determined the sensitivity of 125 P. litchii isolates to fluopicolide, revealing an average EC value of 0.131 ± 0.037 μg/mL. Through fungicide adaptation, four resistant mutants were obtained with resistance factors exceeding 600, indicating that these strains exhibited high levels of resistance. A compound fitness index analysis demonstrated that the survival fitness of resistant mutants was significantly lower than that of their parental strains. Cross-resistance assays revealed no cross-resistance between fluopicolide and other fungicides with different modes of action. However, positive cross-resistance was observed with fluopimomide. A comprehensive evaluation suggested a moderate risk of P. litchii developing resistance to fluopicolide. PlVHA-a and PlVHA-a point mutations in resistant mutants were identified by gene sequencing analyses. These two point mutations were validated as contributors to resistance in P. litchii through genetic transformation and molecular docking.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12011701PMC
http://dx.doi.org/10.1007/s44154-025-00218-9DOI Listing

Publication Analysis

Top Keywords

point mutations
12
resistant mutants
12
phytophthora litchii
8
litchi downy
8
downy blight
8
litchii fluopicolide
8
resistance litchii
8
resistance
6
fluopicolide
6
litchii
6

Similar Publications

Background: Cardiac laminopathies, associated with mutations in the LMNA gene, are a rare inherited disorder characterized by a broad range of clinical manifestations. There are currently no data on the association between supraventricular re-entrant tachycardias and LMNA-related cardiomyopathy.

Case Summary: A 26-year-old male presented with either wide-QRS tachycardia with a left bundle branch block (LBBB) pattern or narrow QRS tachycardia, as well as a history of palpitations since age 15.

View Article and Find Full Text PDF

Quinolone resistance in from Thai ducks: Mutation analysis of , and genes.

Vet World

July 2025

Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand.

Background And Aim: is a Gram-negative bacterium causing systemic infections in ducks, often treated with quinolones. However, increasing resistance to quinolones poses a threat to effective treatment, and the molecular mechanisms underlying this resistance remain inadequately understood in Thailand. This study aimed to determine the minimum inhibitory concentrations (MICs) of nalidixic acid, ciprofloxacin, and enrofloxacin; identify mutations in the quinolone resistance-determining regions of and ; and detect () genes in isolates from Thai ducks.

View Article and Find Full Text PDF

EZH2 variants derived from cryptic splice sites govern distinct epigenetic patterns during embryonic development.

Nucleic Acids Res

September 2025

Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China.

EZH2 catalyzes H3K27me3 and is essential for embryonic development. Although multiple EZH2 variants have been identified, the functional implications and physiological significance of its heterogeneity remain unclear. Here, we revealed that conserved cryptic splice sites generated two EZH2 variants with (EZH2A) or without (EZH2B) a 27-nt region, coding for a 9-aa segment.

View Article and Find Full Text PDF

Purpose: WU-KONG1B (ClinicalTrials.gov identifier: NCT03974022) is a multinational phase II, dose-randomized study to assess the antitumor efficacy of sunvozertinib in pretreated patients with advanced non-small cell lung cancer (NSCLC) with epidermal growth factor receptor () exon 20 insertion mutations (exon20ins).

Methods: Eligible patients with advanced-stage exon20ins NSCLC were randomly assigned by 1:1 ratio to receive sunvozertinib 200 mg or 300 mg once daily (200 and 300 mg-rand cohorts).

View Article and Find Full Text PDF

Identification and antiviral mechanism of a novel chicken-derived interferon-related antiviral protein targeting PRDX1.

PLoS Pathog

September 2025

Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China.

In this study, we identified a new chicken-specific protein, named chicken interferon-related antiviral protein (chIRAP) after sequence analysis and comparison, which inhibited the proliferation of various viruses including influenza A virus (IAV) and Newcastle Disease Virus (NDV) in vitro, and chicken embryos with high expression of chIRAP reduced IAV infection. Mass spectrometry analysis of chIRAP interacting proteins and screening of interacting proteins affecting the function of chIRAP revealed that the deletion of endogenous chicken peroxiredoxin 1 (chPRDX1) significantly reduced the antiviral effect of chIRAP. In order to clarify the functional site of chPRDX1 affecting the antiviral effect of chIRAP, we constructed the point mutants of chPRDX1 based on the results of molecular docking (D79A, T90A, K93A, Q94A, R110A, R123A), and screened the sites affecting the antiviral effects of chIRAP by knockdown of endogenous chPRDX1 combined with the overexpression mutant strategy, the results showed that the mutations in the sites affected the antiviral effects of chIRAP to different degrees, with D79A being the most significant, and the D79A mutation of chPRDX1 reduces the ability of chPRDX1 to regulate reactive oxygen species (ROS).

View Article and Find Full Text PDF