98%
921
2 minutes
20
Viral-bacterial coinfections present intricate pathologies that exacerbate disease progression and elevate mortality rates. Understanding the dynamic interplay between viruses and bacteria during coinfection is critical for developing effective therapeutic interventions. However, current diagnostic tools primarily rely on static detection methods, limiting their ability to monitor real-time infection dynamics. Here, we introduce a ratiometric, dual-responsive quantum dot spherical nucleic acid (QD-SNA) probe capable of simultaneously detecting viral- and bacterial-specific markers . This probe enables real-time monitoring of coinfections, as demonstrated in a mouse model of influenza virus (H1N1) and methicillin-resistant infection. By providing dynamic, visual insights into the coinfection process, the QD-SNA probe holds significant potential for preclinical drug screening and the diagnosis of respiratory pathogen infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.5c00707 | DOI Listing |
Nano Lett
September 2025
Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore.
Discov Nano
September 2025
Department of Rehabilitation Medicine, Rehabilitation Medical Center, Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
Immunoelectron Microscopy (IEM) is a technique that combines specific immunolabeling with high-resolution electron microscopic imaging to achieve precise spatial localization of biomolecules at the subcellular scale (< 10 nm) by using high-electron-density markers such as colloidal gold and quantum dots. As a core tool for analyzing the distribution of proteins, organelle interactions, and localization of disease pathology markers, it has irreplaceable value, especially in synapse research, pathogen-host interaction mechanism, and tumor microenvironment analysis. According to the differences in labeling sequence and sample processing, the IEM technology system can be divided into two categories: the first is pre-embedding labeling, which optimizes the labeling efficiency through the pre-exposure of antigenic epitopes and is especially suitable for the detection of low-abundance and sensitive antigens; the second is post-embedding labeling, which relies on the low-temperature resin embedding (e.
View Article and Find Full Text PDFAnal Bioanal Chem
September 2025
Hebei Key Laboratory of Public Health Safety, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
This work presents the development of a highly sensitive, selective, and efficient aptamer-based fluorescent sensor for detecting cortisol in human urine. Carbon quantum dots-nucleic acid aptamer (CQDs-Apt) synthesized with excellent photoluminescent properties and stability, were selected as the fluorescent probe. In the presence of MoS-NSs, CQDs-Apt adsorbed onto the surface of MoS-NSs via electrostatic and π-π interactions, leading to strong and rapid fluorescence quenching due to static quenching mechanism between them.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, P. R. China.
Quantum dots (QDs) converted to micro light-emitting diodes (LEDs) have emerged as a promising technology for next-generation display devices. However, their commercial application has been hindered by the susceptibility of QDs to photodegradation when directly exposed to an open environment. Here, we develop functional ligand zinc bis[2-(methacryloyloxy)ethyl] phosphate (Zn(BMEP)) to passivate QD surface anions through a phosphine-mediated surface reaction.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada.
Semiconductor quantum dots (QDs) are well known to give rise to a quantum confined structure of excitons. Because of this quantum confinement, new physics of hot exciton relaxation dynamics arises. Decades of work using transient absorption (TA) spectroscopy have yielded initial simple observations, such as estimates of the cooling rate from single pump photon energy experiments.
View Article and Find Full Text PDF