Ratiometric Dual-Response Quantum Dot Spherical Nucleic Acid for Monitoring Viral Secondary Bacterial Infections.

Anal Chem

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China.

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Viral-bacterial coinfections present intricate pathologies that exacerbate disease progression and elevate mortality rates. Understanding the dynamic interplay between viruses and bacteria during coinfection is critical for developing effective therapeutic interventions. However, current diagnostic tools primarily rely on static detection methods, limiting their ability to monitor real-time infection dynamics. Here, we introduce a ratiometric, dual-responsive quantum dot spherical nucleic acid (QD-SNA) probe capable of simultaneously detecting viral- and bacterial-specific markers . This probe enables real-time monitoring of coinfections, as demonstrated in a mouse model of influenza virus (H1N1) and methicillin-resistant infection. By providing dynamic, visual insights into the coinfection process, the QD-SNA probe holds significant potential for preclinical drug screening and the diagnosis of respiratory pathogen infections.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.5c00707DOI Listing

Publication Analysis

Top Keywords

quantum dot
8
dot spherical
8
spherical nucleic
8
nucleic acid
8
qd-sna probe
8
ratiometric dual-response
4
dual-response quantum
4
acid monitoring
4
monitoring viral
4
viral secondary
4

Similar Publications

From Quantum Dots to Cancer Nanotheranostics.

Nano Lett

September 2025

Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore.

View Article and Find Full Text PDF

Immunoelectron microscopy: a comprehensive guide from sample preparation to high-resolution imaging.

Discov Nano

September 2025

Department of Rehabilitation Medicine, Rehabilitation Medical Center, Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.

Immunoelectron Microscopy (IEM) is a technique that combines specific immunolabeling with high-resolution electron microscopic imaging to achieve precise spatial localization of biomolecules at the subcellular scale (< 10 nm) by using high-electron-density markers such as colloidal gold and quantum dots. As a core tool for analyzing the distribution of proteins, organelle interactions, and localization of disease pathology markers, it has irreplaceable value, especially in synapse research, pathogen-host interaction mechanism, and tumor microenvironment analysis. According to the differences in labeling sequence and sample processing, the IEM technology system can be divided into two categories: the first is pre-embedding labeling, which optimizes the labeling efficiency through the pre-exposure of antigenic epitopes and is especially suitable for the detection of low-abundance and sensitive antigens; the second is post-embedding labeling, which relies on the low-temperature resin embedding (e.

View Article and Find Full Text PDF

Carbon quantum dot-aptamer/MoS nanosheet fluorescent sensor for ultrasensitive, noninvasive cortisol detection.

Anal Bioanal Chem

September 2025

Hebei Key Laboratory of Public Health Safety, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.

This work presents the development of a highly sensitive, selective, and efficient aptamer-based fluorescent sensor for detecting cortisol in human urine. Carbon quantum dots-nucleic acid aptamer (CQDs-Apt) synthesized with excellent photoluminescent properties and stability, were selected as the fluorescent probe. In the presence of MoS-NSs, CQDs-Apt adsorbed onto the surface of MoS-NSs via electrostatic and π-π interactions, leading to strong and rapid fluorescence quenching due to static quenching mechanism between them.

View Article and Find Full Text PDF

Zinc Phosphate Passivation Enables Photostable Pixelated Quantum Dot Color Conversion Layers for Display Applications.

J Phys Chem Lett

September 2025

State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, P. R. China.

Quantum dots (QDs) converted to micro light-emitting diodes (LEDs) have emerged as a promising technology for next-generation display devices. However, their commercial application has been hindered by the susceptibility of QDs to photodegradation when directly exposed to an open environment. Here, we develop functional ligand zinc bis[2-(methacryloyloxy)ethyl] phosphate (Zn(BMEP)) to passivate QD surface anions through a phosphine-mediated surface reaction.

View Article and Find Full Text PDF

Semiconductor quantum dots (QDs) are well known to give rise to a quantum confined structure of excitons. Because of this quantum confinement, new physics of hot exciton relaxation dynamics arises. Decades of work using transient absorption (TA) spectroscopy have yielded initial simple observations, such as estimates of the cooling rate from single pump photon energy experiments.

View Article and Find Full Text PDF