Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Zinc hydrometallurgy sites are critical hotspots for combined toxic metal(loid)s (TMs) pollution, yet the integration of spatial heterogeneity and migration dynamics into source apportionment remains underexplored. This study investigated the concentrations, speciation, and spatial distribution of nine TMs (As, Cd, Cu, Hg, Mn, Ni, Pb, Sb, Zn) in soils at an abandoned zinc smelter in southwest China. Multivariate statistical methods and the Positive matrix factorization (PMF) model were applied to disentangle primary sources and secondary redistribution. Spatial analysis revealed that As, Cd, Cu, Pb, Sb, and Zn shared similar contamination patterns, concentrated in slag storage and comprehensive recovery areas, whereas Hg and Mn exhibited distinct hotspots near sulfuric acid production and electrolysis zones. Vertical migration was most pronounced for Cd and Zn (> 8 m depth), followed by Hg and Mn (4-8 m), while As, Cu, Pb, and Sb were restricted to 0-4 m due to adsorption in clay-rich layers. Speciation analysis indicated high mobility of Cd and Zn (acid-soluble fraction: 66.96 and 52.10%, respectively), contrasting with reducible Pb and Mn (51.59 and 48.32%) and residual As, Hg, Ni, Sb (60.74-76.64%). The results from PMF model identified aqueous-phase (Cd, Zn, Mn) and solid-phase (As, Cu, Pb, Sb) migration pathways, validated by spatial correlations with topography and functional zones. Aqueous-phase contributions dominated low-lying areas, while solid-phase contributions aligned with elevated regions, reflecting topography-driven redistribution. This study advances source apportionment of TM in soil by unifying spatial heterogeneity, speciation dynamics, and receptor modeling, offering a framework for targeted risk assessment and remediation of industrial sites.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10653-025-02469-xDOI Listing

Publication Analysis

Top Keywords

spatial heterogeneity
12
source apportionment
12
heterogeneity speciation
8
speciation dynamics
8
dynamics source
8
toxic metalloids
8
pmf model
8
spatial
5
integrating spatial
4
speciation
4

Similar Publications

Breast cancer is a highly heterogeneous disease with diverse outcomes, and intra-tumoral heterogeneity plays a significant role in both diagnosis and treatment. Despite its importance, the spatial distribution of intra-tumoral heterogeneity is not fully elucidated. Spatial transcriptomics has emerged as a promising tool to study the molecular mechanisms behind many diseases.

View Article and Find Full Text PDF

Single-cell surface-enhanced Raman scattering (SERS) has emerged as a powerful tool for precision medicine owing to its label-free detection, ultrasensitivity, and unique molecular fingerprinting. Unlike conventional bulk analysis, it enables detailed characterization of cellular heterogeneity, with particular promise in circulating tumor cell (CTC) identification, tumor microenvironment (TME) metabolic profiling, subcellular imaging, and drug sensitivity assessment. Coupled with microfluidic droplet systems, SERS supports high-throughput single-cell analysis and multiparametric screening, while integration with complementary modalities such as fluorescence microscopy and mass spectrometry enhances temporal and spatial resolution for monitoring live cells.

View Article and Find Full Text PDF

Uncovering nonlinear causal relationships and propagation dynamics of drought types in Xinjiang using convergent cross mapping.

J Environ Manage

September 2025

College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi, 830052, China; Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Urumqi, 830052, China. Electronic address:

Drought is one of the most destructive natural disasters globally. Understanding its propagation mechanisms and the causal relationships among different drought types is crucial for effective monitoring and mitigation. Using meteorological (SPI), hydrological (SRI), and agricultural (SSMI) drought indices from 1983 to 2023 in Xinjiang, this study employs the Convergent Cross Mapping (CCM) method to systematically quantify nonlinear causal relationships among the three drought types, revealing their temporal lag characteristics, spatial heterogeneity, and multiscale dynamics.

View Article and Find Full Text PDF

Impact of wettability heterogeneity on methane hydrate growth kinetics in partially water-saturated sediments.

J Colloid Interface Sci

August 2025

Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou),

Hypothesis: Gas hydrate formation in sediments is influenced by the availability of gas-water interfacial areas, which governs gas-water interactions. The surface wettability of sediment particles is expected to affect the spatial distribution of water within the pore space, thereby altering the extent of gas-liquid contact. Consequently, by tuning the wettability heterogeneity of the sediment, the spatial distribution of pore water can be regulated, which in turn influences the gas-water interactions and the kinetics of gas hydrate formation.

View Article and Find Full Text PDF

Diffusive and advective flux measurements of trichloroethene from soil into a building: a case study.

Chemosphere

September 2025

UMR Epoc 5805, Bordeaux-INP. 1 Allée Daguin, 33607, Pessac cedex, France. Electronic address:

In order to validate some assumptions and calculations of Johnson and Ettinger's model, a mapping of measured VOC fluxes in a heavily contaminated building was undertaken. To this end, both advective and diffusive flux measurements were carried out under real conditions. Diffusive fluxes were measured with flux chambers recording the initial concentration rise during the first minutes.

View Article and Find Full Text PDF