Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Soil biodegradable polyesters are designed to undergo to microbial utilization in aerobic soils, forming carbon dioxide and microbial biomass. These polyesters are thus viable substitutes for conventional, persistent polymers (e.g., polyethylene) in specific applications for which the transfer of some of the polymers into the soil is inevitable. While polymer biodegradability is often assessed in laboratory incubations using respirometric analysis of formed CO, approaches to accurately quantify biodegradable polyesters in soils and to track their mass loss in field incubations over time remain missing. This study first introduces an analytical workflow combining Soxhlet extraction with proton nuclear magnetic resonance spectroscopy for the accurate, high-throughput, and chemically selective quantification of eight commercially important biodegradable polyesters (i.e., poly(butylene adipate--terephthalate), polylactic acid, poly(3-hydroxybutyrate--3-hydroxyhexanoate), poly(3-hydroxybutyrate--3-hydroxyvalerate), polycaprolactone, polybutylene adipate, polybutylene azelate, and polybutylene succinate), and the nonbiodegradable polymer polystyrene, in six soils spanning a range of types and physicochemical properties. This work introduces an effective sample deployment-retrieval approach that, combined with the analytical method, allows the biodegradation of poly(butylene adipate--terephthalate) and polylactic acid from a biodegradable mulch film in three agricultural soils to be monitored. In combination, the two parts of this work lay the foundation to accurately quantify and monitor biodegradable polymers in soils.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12044702PMC
http://dx.doi.org/10.1021/acs.est.4c10664DOI Listing

Publication Analysis

Top Keywords

biodegradable polyesters
16
analytical workflow
8
quantify biodegradable
8
polyesters soils
8
accurately quantify
8
polybutylene adipate--terephthalate
8
adipate--terephthalate polylactic
8
polylactic acid
8
biodegradable
6
soils
6

Similar Publications

An efficient bacterial laccase-mediated system for polyurethane foam degradation.

Front Microbiol

August 2025

Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.

Polyurethane (PU), a segmented block copolymer with chemically resistant urethane linkages and tunable architecture, presents persistent biological recycling challenges. This study presents a Bacterial Laccase-Mediated System (BLMS) derived from for efficient degradation of polyester- and polyether-PU. Utilizing the laccase CotA and mediator 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), the BLMS demonstrated effective de polymerization of both commercial and self-synthesized PU foams, including polyester- and polyether-types.

View Article and Find Full Text PDF

Poly(glycolic acid) (PGA) is one of the most widely used biodegradable polyesters, but its efficient valorization presents a long-standing challenge. Herein, we report the first facile PGA valorization strategy by utilizing epoxides to upcycle PGA into fused lactones under mild conditions (<100 °C), and subsequent copolymerization to produce copolyesters with wide potential tunability and enhanced performance. In the presence of epoxides and a chromium-based catalyst, PGA was efficiently transformed into fused lactones with a wide range of potential structural adjustability.

View Article and Find Full Text PDF

The global accumulation of plastic waste, exceeding 360 million tonnes annually, represents a critical environmental challenge due to their widespread use and extreme recalcitrance in natural environments. Furthermore, the end-of-life processing of bioplastics, which are often marketed as eco-friendly, remains problematic, with biodegradation often requiring industrial conditions. Enzyme-based depolymerization of polyesters, such as polyethylene terephthalate (PET) and bioplastics (e.

View Article and Find Full Text PDF

The stress urinary incontinence (SUI) is a difficulty in urology and current sub-urethral sling treatments are associated with inflamation and recurrence. In this study, we developed a novel tissue-engineered sling with myogenic induced adiposederived stem cells (MI-ADSCs) sheets induced by 5-Aza and combined with electrospun scaffolds of silk fibroin and poly(lactide-co-glycolide) (SF/PLGA) for the treatment of stress urinary incontinence. MI-ADSCs increased α-SMA, MyoD and Desmin the mRNA and protein expression.

View Article and Find Full Text PDF

Regioselective Ring-Opening Polymerization of Asymmetric Cyclic Dimers for Polyester-Based Alternating Copolymers.

Chemistry

September 2025

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.

Sequence-controlled polyester-based alternating copolymers have attracted significant interest due to their biocompatibility, biodegradability, closed-loop recyclability, and hydrolytic degradability, offering broad potential in biomedical and sustainable materials. Among the available strategies, regioselective ring-opening polymerization (ROP) of asymmetric cyclic di(thio)esters and cyclic(ester-amide)s has emerged as a promising approach for constructing alternating copolymers with precise sequence- and stereo-control, structural diversity, and tunable properties. This review classifies asymmetric cyclic monomers into two categories: (1) monomers with two aliphatic ester bonds, where regioselectivity is mainly dictated by steric differences and typically requires tailored metal catalysts; and (2) monomers with chemically distinct reactive sites (e.

View Article and Find Full Text PDF