Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The molluscan shell and radula constitute pivotal molluscan innovations, each characterized by distinct functions and diverse forms, regulated by the highly specific biomineralization regulatory networks. Despite their paramount importance, the conserved components and adaptive evolutionary processes governing these regulatory networks remain unresolved. To address this knowledge gap, we advocate for the integration of data from less-explored lineages, such as Scaphopoda, as an essential step. This study presents the inaugural comprehensive transcriptome analysis of Pictodentalium vernedei, a representative species of Scaphopoda distinguished by a unique and evolutionarily conserved shell morphology and radula structure. Furthermore, comparative transcriptome/genome analyses are employed to unravel the conservatism and evolutionary innovation of the involved biomineralization regulatory elements. Our findings underscore the central role of secretomes in governing biomineralization processes, and we identified a fundamental set of 26 domains within molluscan secretomes, forming an essential functional protein domain repertoire necessary for the transformation of inorganic ions into biomineralized structures. This core biomineralization toolkit has undergone independent expansion and lineage-specific recruitment, giving rise to novel, modular domain architectures. This may be essential for the functional specialization and morphological diversification of shell and radula structures. These evolutionary processes are driven by the independent co-option of ancient genes and the emergence of novel de novo genes. This comprehensive investigation not only contributes insights into the evolution of molluscan biomineralization structures but also establishes avenues for further scholarly exploration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1749-4877.12978 | DOI Listing |