98%
921
2 minutes
20
Background & Purpose: Cone-beam computed tomography (CBCT) images are used in image-guided radiotherapy to track anatomical changes throughout treatment and to set up patients to ensure accurate delivery of therapeutic radiation at each treatment session. An offline method of CBCT reconstruction workflow, operating on 2D projection images and specific to the imaging system in question, is needed for many image optimisation studies. Here we present a methodology to reconstruct CBCT images from these data for a commercial proton beam therapy machine, accounting for the variation in exposure and beam hardening from filtration due to gantry rotation during CBCT acquisition.
Materials & Methods: Projection data of solid water phantoms were acquired to model bow-tie filter motion and beam hardening effects. Projection data and system CBCT reconstructions of a Catphan504 phantom were acquired for validation of the method, as well as a retrospectively accessed patient image. The presented workflow was assessed against the clinical reconstructions using uniformity, signal-to-noise-ratio, and contrast-to-noise-ratio measured in the phantom images.
Results: The offline workflow eliminated crescent artefacts due to variable exposure and beam hardening in phantom and patient images. Signal-to-noise and contrast-to-noise ratios were similar compared to system reconstructions, although with slight differences thought to be due to interplay effects in the bow-tie filter.
Conclusion: A workflow was developed to emulate the CBCT reconstruction process for a commercial proton therapy machine, providing a useful tool for optimised acquisition parameters and novel reconstruction processes using this system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12005303 | PMC |
http://dx.doi.org/10.1016/j.phro.2025.100745 | DOI Listing |
Plant Physiol
September 2025
National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China.
Lemon (Citrus limon L.), an economically important Citrus species, produces high levels of citric acid. However, the regulatory mechanisms underlying citric acid accumulation in lemon fruit are poorly understood.
View Article and Find Full Text PDFEur Radiol
September 2025
Department of Radiology, Northeastern Ohio Medical University, Rootstown, OH, USA.
Objectives: Methods for measuring the ultrasound attenuation coefficient (AC) vary across different systems. Some have fixed regions of interest (ROI) while others have movable ROIs. Aims were to evaluate whether, using a system with a fixed ROI, correlation between AC and MRI proton density fat fraction (MRI-PDFF), and performance could be improved by (i) reducing fixed ROI length to 30 mm, changing starting point from the transducer, and (ii) using a movable ROI at different depths.
View Article and Find Full Text PDFNanoscale
September 2025
Department of Electrical Engineering, Chosun University, 309, Pilmun-daero, Dong-gu, Gwangju, 61452, South Korea.
Platinum and platinum-based alloys have been reported to exhibit enhanced electrochemical properties in proton exchange membrane fuel cells and electrolyzers. The development of platinum alloy-based catalysts has focused on designing structures with highly active surfaces and optimizing the utilization of the noble metal Pt. In this study, we demonstrate the synthesis of novel nanostructures with a rhombic dodecahedral morphology through precursor syntheses of Pt, Ni, and Fe.
View Article and Find Full Text PDFChem Soc Rev
September 2025
Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute
Proton exchange membrane fuel cells (PEMFCs) represent a promising clean and efficient energy conversion technology. Enhancing the efficiency of the oxygen reduction reaction (ORR) at the cathode is crucial for improving overall cell performance. Beyond the intrinsic activity of the catalyst, mass transport at the oxygen-water-catalyst three-phase boundary (TPB) in the catalyst layers (CLs) significantly influences ORR kinetics.
View Article and Find Full Text PDFFront Microbiol
August 2025
Amentum Space Exploration Division, Huntsville, AL, United States.
Introduction: Microorganisms can have major impacts on the success of NASA's missions, including the integrity of materials, the protection of extraterrestrial environments, the reliability of scientific results, and maintenance of crew health. Robust cleaning and sterilization protocols for spacecraft and associated environments are currently in place in NASA facilities, but microbial contamination should be further controlled and its impact on NASA's missions and science must be minimized. To address this, air and surfaces across cleanrooms and uncontrolled spaces at the Marshall Space Flight Center were sampled and microbial burden and diversity were analyzed.
View Article and Find Full Text PDF