98%
921
2 minutes
20
Holo-omics provide a novel opportunity to study the interactions among fungi from different functional guilds in host plants in field conditions. We address the entangled responses of plant pathogenic and endophytic fungi associated with sorghum when droughted through the assembly of the most abundant fungal, endophyte genome from rhizospheric metagenomic sequences followed by a comparison of its metatranscriptome with the host plant metabolome and transcriptome. The rise in relative abundance of endophytic Acremonium persicinum (operational taxonomic unit 5 (OTU5)) in drought co-occurs with a rise in fungal membrane dynamics and plant metabolites, led by ethanolamine, a key phospholipid membrane component. The negative association between endophytic A. persicinum (OTU5) and plant pathogenic fungi co-occurs with a rise in expression of the endophyte's biosynthetic gene clusters coding for secondary compounds. Endophytic A. persicinum (OTU5) and plant pathogenic fungi are negatively associated under preflowering drought but not under postflowering drought, likely a consequence of variation in fungal fitness responses to changes in the availability of water and niche space caused by plant maturation over the growing season. Our findings suggest that the dynamic biotic interactions among host, beneficial and harmful microbiota in a changing environment can be disentangled by a blending of field observation, laboratory validation, holo-omics and ecological modelling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.70155 | DOI Listing |
Mol Plant Pathol
September 2025
State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
Superinfection exclusion (SIE) is a finely tuned virus-virus interaction mechanism closely linked to the viral infection cycle. However, the mechanistic basis of SIE remains incompletely understood in plant viruses, particularly among negative-sense, single-stranded RNA viruses. In this study, we first describe the development of an efficient reverse genetics system for the plant nucleorhabdovirus Physostegia chlorotic mottle virus (PhCMoV) by codon optimisation of the large polymerase coding sequence.
View Article and Find Full Text PDFRev Argent Microbiol
September 2025
IPICYT, División de Biología Molecular, Laboratorio de Genómica Funcional y Comparativa, Camino a la Presa San José 2055, Col. Lomas 4 Sección, 78216 San Luis Potosí, SLP, Mexico.
Fungal diseases in agricultural crops cause economic losses, with chemical control being the conventional method to manage them. However, this approach negatively impacts both the environment and human health. This study focused on endophytic fungi isolated from the roots of Ceratozamia mirandae in the Mexican locality of Juan Sabines (Villa Corzo, Chiapas).
View Article and Find Full Text PDFMicrobes Environ
September 2025
Research Field in Agriculture, Agriculture Fisheries and Veterinary Medicine Area, Kagoshima University.
Sweet potato foot rot disease caused by Diaporthe destruens (formerly Plenodomus destruens) severely affects the yield and quality of sweet potatoes. To gain basic knowledge on regulating the pathogen using indigenous soil bacteria, the following organic materials were applied to potted soils collected from a sweet potato field contaminated with D. destruens: Kuroihitomi (compost made from shochu waste and chicken manure), Soil-fine (material made by adsorbing shochu waste on rice bran), and rice bran.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Entomopathogenic fungi can precisely inhibit the cellular and humoral immune responses of host insects by secreting effector proteins, allowing them to overcome the innate immune barriers of their hosts. Nodule formation is an immune response primarily mediated by insect hemocytes, which can rapidly and efficiently capture invading pathogenic fungi in the hemocoel. However, the molecular mechanisms by which fungi inhibit insect nodule formation through the secretion of effector proteins remain unclear.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
State Key Laboratory of Agricultural and Forestry Biosecurity & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China. Electronic address:
Rice bacterial leaf streak (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc) significantly reduces rice yield and quality. Traditional chemical control methods often have limited efficacy and raise environmental concerns, highlighting the need for safer and more effective alternatives.
View Article and Find Full Text PDF