98%
921
2 minutes
20
The fungus Sanghuangporus sanghuang possesses notable medicinal and edible characteristics, displaying a diverse array of biological functionalities. This research endeavor seeks to investigate the procedure of extracting flavonoids from S. sanghuang, and the qualitative and quantitative analysis of flavonoids extraction from S. sanghuang using ultra-performance liquid chromatography (UPLC), and assess its antioxidant capacity and potential antiproliferative properties. The ultrasonic-assisted extraction resulted in a 2.34-fold increase compared to the hot water extraction method. Response surface methodology (RSM) was employed to enhance the extraction process of flavonoids from S. sanghuang. The results indicated that the optimal extraction rate of S. sanghuang flavonoids were achieved at 16.16 ± 0.12 %. This was attained at an ultrasound temperature of 50°C using 80 % ethanol concentration and an ultrasound extraction time of 60 min. The S. sanghuang extract was analyzed using UPLC, resulting in the identification of twenty-six distinct compounds. The flavonoids derived from S. sanghuang have demonstrated the ability to effectively scavenge DPPH, superoxide anions (O), and hydroxyl free radicals (OH), in addition to exhibiting ferric reducing power. Furthermore, it exhibited inhibitory effects on α-glucosidase. The Pearson correlation analysis revealed a statistically significant positive correlation between the antioxidant capacities, encompassing DPPH, O, OH, ferric reducing power, and the inhibited α-glucosidase capability. It has been determined that the activity of α-glucosidase can be inhibited by S. sanghuang flavonoids, and this inhibition can be predicted using a model developed with the MATLAB program. In the current investigation, the study successfully demonstrated the inhibitory effects of S. sanghuang flavonoids on cell proliferation and migration in glioma cells. This was achieved through the analysis of CCK-8 assay and wound healing assay, with statistical significance observed (p < 0.05).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12020841 | PMC |
http://dx.doi.org/10.1016/j.ultsonch.2025.107326 | DOI Listing |
J Fungi (Basel)
July 2025
College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
spp. are medicinal fungi with significant therapeutic value, but their taxonomic ambiguity and frequent market adulteration have hindered their standardized utilization. In this study, untargeted metabolomics based on UPLC-Q-TOF-MS was employed to systematically analyze the metabolic profiles of three species: .
View Article and Find Full Text PDFSanghuang (SH), a natural fungal resource used for food and medicinal purposes, has drawn considerable attention due to its pharmacological effects and efficacy. This study focused on Wild Sanghuang (WS) and Sanghuang cultivated using two different methods: Duanmu Sanghuang and Mycelium Sanghuang. Using UPLC-O-TOF-MS, we conducted an in-depth analysis of the secondary metabolites present in SH.
View Article and Find Full Text PDFSci Rep
July 2025
College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
Inonotus hispidus, a fungal species morphologically closely related to the medicinal genus Sanghuang,has garned considerable attention due to its potential health-prompting benefits. This study presents the whole-genome sequence of I. hispidus ZA-14, a monokaryotic strain isolated from wild fruiting bodies growing in Morus alba (hereinafter referred to as MA).
View Article and Find Full Text PDFUltrason Sonochem
June 2025
China-UK International Joint Laboratory for Insect Biology of Henan Province, School of Life Science, Nanyang Normal University, Henan Province, China. Electronic address:
The fungus Sanghuangporus sanghuang possesses notable medicinal and edible characteristics, displaying a diverse array of biological functionalities. This research endeavor seeks to investigate the procedure of extracting flavonoids from S. sanghuang, and the qualitative and quantitative analysis of flavonoids extraction from S.
View Article and Find Full Text PDFPeerJ
May 2025
Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China.
Background: The objective of the present study is to examine the total phenolic and flavonoid content of an ethanol extract of and to evaluate its phytochemical properties, antioxidant activity, and capacity to protect DNA from damage. This pharmaceutical/food resource mushroom may serve as a novel substitute functional food for health-conscious consumers, given its promising source of phenolics and flavonoids.
Methods: ethanol extract (SEE) was evaluated for total phenolic and flavonoid contents, while UPLC-MS analysis was used for terpenoids, phenylpropanoid, flavonoids, steroidal, phenols identification, and function prediction.