Polyoxometalate Etching of NMO@NF for Highly Efficient Oxygen Evolution Reaction in Water Splitting.

Int J Mol Sci

Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this study, PTA&PMA/NiMoO@NF was synthesized on nickel foam through wet chemical etching to promote the kinetics of the oxygen evolution reaction (OER) effectively. OER benefits from two cationic (Ni and Mo) defects and the optimized electronic configuration of PTA&PMA/NiMoO@NF. Thus, it only needs 200 mV to reach the current density of 10 mA cm in 1.0 mol/L of KOH. This value is nearly 100 mV lower than the value needed by pure NiMoO. After being used as an anode for water splitting in an alkaline solution, the as-obtained catalyst can operate at a current density of 10 mA cm for 24 h of good stability. The synthesis strategy adopted in this study can provide an effective, low-cost, simple, and convenient strategy for improving the OER electrocatalytic performance of other transition metal oxides.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11988611PMC
http://dx.doi.org/10.3390/ijms26073107DOI Listing

Publication Analysis

Top Keywords

oxygen evolution
8
evolution reaction
8
water splitting
8
current density
8
polyoxometalate etching
4
etching nmo@nf
4
nmo@nf highly
4
highly efficient
4
efficient oxygen
4
reaction water
4

Similar Publications

Two-dimensional 1T-phase MnIrO for high-performance acidic oxygen evolution reaction.

Nanoscale

September 2025

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China.

Proton exchange membrane water electrolysis (PEMWE) is regarded as the most promising technique for the sustainable production of green hydrogen due to its multiple advantages such as high working current density and high hydrogen purity. However, the anodic oxygen evolution reaction (OER) has a significant impact on the overall efficiency of the electrolytic water reaction due to its sluggish kinetics, which has prompted the search for catalysts possessing both high activity and durability. Iridium oxide exhibits excellent stability under acidic conditions but has poor catalytic activity, leading to its inability to meet the strict requirements of large-scale industrial applications.

View Article and Find Full Text PDF

This review delivers a focused and critical evaluation of recent progress in the green synthesis of carbon quantum dots (CQDs), with particular attention to state-of-the-art approaches utilizing renewable biomass as precursors. The main objective is to systematically examine innovative, environmentally friendly methods and clarify their direct influence on the core properties and photocatalytic performance of CQDs. The novelty of this review stems from its comprehensive comparison of green synthetic pathways, revealing how specific processes determine key structural, optical, and electronic attributes of the resulting CQDs.

View Article and Find Full Text PDF

The lattice oxygen mechanism (LOM) of the oxygen evolution reaction (OER) offers significant kinetic advantages over the adsorbed oxygen mechanism. Anion intercalation induces the LOM in NiOOH by enhancing the covalency of lattice oxygen through the modulation of the metal-oxygen electronic state. The relationships between doping mechanisms, such as the size and valence state of anions and the kinetics of the OER, have been clarified.

View Article and Find Full Text PDF

The surface structure of an electrocatalyst plays a crucial role in determining the activity. As a model system, gold has been widely investigated as an electro-oxidation catalyst, although there has been much less research on the oxygen evolution reaction (OER) in the potential region of gold oxidation. Here, we combine voltammetric scanning electrochemical cell microscopy (SECCM) and electron backscatter diffraction (EBSD), at different spatial and angular resolutions, respectively, to correlate the local crystallographic structure of polycrystalline goldfocusing on grains close to (113), (011), (114), and (111) orientationswith the electrocatalytic behavior for the OER.

View Article and Find Full Text PDF

Laser processing in liquids: insights into nanocolloid generation and thin film integration for energy, photonic, and sensing applications.

Beilstein J Nanotechnol

August 2025

Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León. San Nicolás de los Garza, Nuevo León, 66455, México.

Nanoparticles in their pure colloidal form synthesized by laser-assisted processes such as laser ablation/fragmentation/irradiation/melting in liquids have attained much interest from the scientific community because of their specialties like facile synthesis, ultra-high purity, biocompatibility, colloidal stability in addition to other benefits like tunable size and morphology, crystalline phases, new compounds and alloys, and defect engineering. These nanocolloids are useful for fabricating different devices mainly with applications in optoelectronics, catalysis, sensors, photodetectors, surface-enhanced Raman spectroscopy (SERS) substrates, and solar cells. In this review article, we describe different methods of nanocolloidal synthesis using laser-assisted processes and corresponding thin film fabrication methods, particularly those utilized for device fabrication and characterization.

View Article and Find Full Text PDF