Revealing Local Diffusion Dynamics in Hybrid Solid Electrolytes.

ACS Energy Lett

Section Storage of Electrochemical Energy, Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB, Delft, The Netherlands.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hybrid solid electrolytes (HSEs) leverage the benefits of their organic and inorganic components, yet optimizing ion transport and component compatibility requires a deeper understanding of their intricate ion transport mechanisms. Here, macroscopic charge transport is correlated with local lithium (Li)-ion diffusivity in HSEs, using poly(ethylene oxide) (PEO) as matrix and LiPSCl as filler. Solvent- and dry-processing methods were evaluated for their morphological impact on Li-ion transport. Through multiscale solid-state nuclear magnetic resonance analysis, we reveal that the filler enhances local Li-ion diffusivity within the slow polymer segmental dynamics. Phase transitions indicate inhibited crystallization in HSEs, with reduced Li-ion diffusion barriers attributed to enhanced segmental motion and conductive polymer conformations. Relaxometry measurements identify a mobile component unique to the hybrid system at low temperatures, indicating Li-ion transport along polymer-filler interfaces. Comparative analysis shows solvent-processed HSEs exhibit better morphological uniformity and enhanced compatibility with Li-metal anodes via an inorganic-rich solid electrolyte interphase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11998072PMC
http://dx.doi.org/10.1021/acsenergylett.5c00214DOI Listing

Publication Analysis

Top Keywords

hybrid solid
8
solid electrolytes
8
ion transport
8
li-ion diffusivity
8
li-ion transport
8
transport
5
li-ion
5
revealing local
4
local diffusion
4
diffusion dynamics
4

Similar Publications

Background: Local control strategies in pediatric oncology are guided by disease-specific considerations. Effective communication of the goals of surgical procedure and associated intraoperative events plays a crucial role in shaping subsequent treatment decisions. However, accurately and comprehensively documenting these findings remains challenging, with considerable variability across different tumor types.

View Article and Find Full Text PDF

Accelerating iron redox cycling via acetate modification: a ligand engineering for sustainable fenton-like oxidation.

Water Res

September 2025

State Key Laboratory of Soil Pollution Control and Safety, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Future Environment Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China. Electronic address:

Accelerating the rate-limiting surface Fe(III)/Fe(II) redox cycling is pivotal for efficient iron-mediated Fenton-like decontamination, yet conventional reductants (e.g., toxic hydroxylamine, thiosulfate) suffer from secondary toxicity, self-quenching, and heavy metal leaching.

View Article and Find Full Text PDF

HER2DX ERBB2 score in advanced HER2-positive gastric cancer treated with trastuzumab and chemotherapy.

ESMO Open

September 2025

Department of Medical Oncology, Hospital Clínic Barcelona, Barcelona, Spain; Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain; Clínic Barcelona

Background: Response to trastuzumab combined with chemotherapy (T-chemo) in human epidermal growth factor receptor 2 (HER2)-positive advanced gastric cancer (AGC) varies widely, highlighting the need for more precise biomarkers beyond conventional HER2 assessment with immunohistochemistry (IHC) and in situ hybridization (ISH). The HER2DX ERBB2 messenger RNA (mRNA) assay, a clinically validated genomic test initially developed for early-stage HER2-positive breast cancer, quantitatively measures ERBB2 expression and may improve patient selection for T-chemo in AGC.

Patients And Methods: In a retrospective cohort of 134 patients with AGC, including 58 who received T-chemo, we evaluated whether the HER2DX ERBB2 score defines more accurately HER2 status and correlates with treatment response and survival outcomes in HER2-positive AGC, compared with standard pathology-based methods.

View Article and Find Full Text PDF

Noninvasive multiclass milk contaminants detection using hyperspectral imaging and hybrid ensemble learning.

J Dairy Sci

September 2025

Advance Image Processing Research Laboratory (AIPRL), Institute of Computer and Software Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan.

Food contamination remains a serious global concern due to its health risks, with milk being one of the most commonly adulterated foods in developing countries such as Pakistan, India, and Bangladesh. Accurate detection of milk contamination is essential for ensuring consumer safety and maintaining food industry standards. This study explores both invasive and noninvasive approaches for contamination analysis.

View Article and Find Full Text PDF

Time-Resolved Small-Angle X-Ray Studies of Spherical Micelle Formation and Growth During Polymerization-Induced Self-Assembly in Polar Solvents.

Small

September 2025

South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South Chi

Self-assembled poly(2-dimethylaminoethyl methacrylate)-poly(2-(diisopropylamino)ethyl methacrylate) (PDMA-PDPA) diblock copolymer nanoparticles are widely employed in biological applications, driving the need for a robust and scalable production method. Although polymerization-induced self-assembly (PISA) enables efficient nanoparticle synthesis at high solids content, its research and application to PDMA-PDPA are limited, likely due to kinetic trapping. Leveraging our recently developed generic time-resolved small-angle X-ray scattering (TR-SAXS) approach for PISA in non-polar media, a reversible addition-fragmentation chain transfer-mediated PDMA-PDPA PISA process in polar solvent that produces spherical micelles is examined.

View Article and Find Full Text PDF