Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Carbon dioxide and non-greenhouse gas air pollutants are emitted from many of the same sources. Decarbonization actions thus typically yield air pollutant emission reductions, resulting in significant air quality benefits. Although several studies have highlighted this connection, including in the context of net zero carbon emission targets, substantial uncertainty remains regarding how alternative technological pathways to this goal will affect the spatial distribution and magnitude of air pollutants. Comprehensive multi-model and multi-scenario analyses are needed to explore the relative impacts of alternative pathways. Our study begins to address this gap by leveraging the results from the recent Energy Modeling Forum 37 inter-model comparison exercise on U.S. decarbonization pathways. Comparing the results of the six teams who submitted air pollutant emissions suggests that strategies that target net zero U.S. carbon emissions would yield significant reductions in many air pollutants, and that this finding is generally robust across pathways. However, some energy sources, such as biomass and fossil fuels with carbon capture, will emit air pollutants and can potentially influence the magnitude, spatial distribution, and even sign of localized air pollutant emission changes. In the second part of this analysis, a simplified air quality and health impacts screening model is used to evaluate the air quality impacts in 2035 of sectoral emission changes from the three models that provided sectoral detail. Relative to a reference scenario, a net zero pathway is estimated to reduce fine particulate matter concentrations across the contiguous U.S., with health benefits from reduced mortality ranging from $65 billion to $250 billion in 2035 alone (2023$s). These benefits would be expected to grow over time as the net zero trajectory becomes more stringent. Both the magnitude of potential benefits and the substantial variation of the projections across models underscore the need for an EMF-like inter-model comparison exercise focused on air quality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11998919PMC
http://dx.doi.org/10.1016/j.egycc.2024.100165DOI Listing

Publication Analysis

Top Keywords

air pollutant
16
air pollutants
16
air quality
16
pollutant emission
12
air
11
energy modeling
8
modeling forum
8
reductions air
8
net carbon
8
spatial distribution
8

Similar Publications

Multifunctional Photoactive Janus Nanofibrous Membranes for Unidirectional Water Transport and Remediation of Airborne Pathogens and Pollutants.

ACS Nano

September 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China.

Airborne pathogens and pollution control typically necessitate multiple membranes, each specializing in efficient aerosol filtration, moisture regulation, or antimicrobial protection. Integrating all these functions into a single membrane is highly advantageous but remains inherently challenging due to material incompatibility and inevitable performance trade-offs. Here, we present a photoactive Janus nanofibrous membrane for highly efficient air purification, engineered via sequential electrospinning.

View Article and Find Full Text PDF

4-Octyl Itaconate ameliorates diesel exhaust particle-induced oxidative stress in nasal epithelial cells.

Front Immunol

September 2025

Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany.

Background And Objective: Particulate matters such as diesel exhaust particles induce oxidative stress in cells and thereby have a negative impact on health. The aim of this study was to test whether the membrane-permeable, anti-inflammatory metabolite 4-Octyl Itaconate can counteract the oxidative stress induced by diesel exhaust particles and to analyze the downstream-regulated pathways both in human nasal epithelial cells and PBMCs.

Methods: Human nasal epithelial cells were cultured from nasal swabs, and the response of the cells to diesel exhaust particles either alone or in combination with 4-Octyl Itaconatee was investigated using RNA sequencing, qPCR, and cytokine measurement.

View Article and Find Full Text PDF

Swiss national radon database: impact of building and environmental factors.

Front Public Health

September 2025

Western Switzerland Center for Indoor Air Quality and Radon (croqAIR), Transform Institute, School of Engineering and Architecture of Fribourg, HES-SO University of Applied Sciences and Arts Western Switzerland, Fribourg, Switzerland.

Since the 1980s, radon has been recognized as a public health concern in Switzerland and internationally. In an effort to more accurately estimate the number of lung cancer cases attributable to radon exposure, Swiss health authorities initiated the creation of radon measurements into a centralized national database. As of 2025, this database comprises approximately 300,000 measurements from 150,000 buildings across the country.

View Article and Find Full Text PDF

Introduction: Meteorological factors and air pollutants are two important factors affecting hospitalisation for coronary heart disease. This study aims to investigate the effects of meteorological factors and air pollutants on the risk of coronary heart disease hospitalisation and their interactions in rural areas with heavy particulate matter pollution at the edge of the desert in southern Xinjiang.

Methods: In this study, patients with coronary heart disease who were hospitalized in Tangyi Town, Tumushuke City, Xinjiang Province, were selected as the study subjects, and the lagged effects of meteorological factors and air pollutants on the risk of coronary heart disease hospitalisation and their interactions were analysed by combining the distributional lag nonlinear model and the quasi-Poisson regression model.

View Article and Find Full Text PDF

Investigating the early-stage emissions of formaldehyde/VOCs from building materials and their influencing factors.

Environ Technol

September 2025

School of Architecture and Urban Planning, Chongqing Jiaotong University, Chongqing, People's Republic of China.

As urbanization accelerates, the issue of pollutant discharge from building materials has become the focus of public attention. Conducted in a ventilated environmental chamber, the experiments investigated the emission characteristics of VOCs from dry and wet building materials, focusing on the influencing factors, such as temperature, relative humidity (RH), ventilation, and seasonality. The impact of influencing factors was quantified using a one-factor-at-a-time control method.

View Article and Find Full Text PDF