98%
921
2 minutes
20
Importance: Despite the availability of disease-modifying therapies, scalable strategies for heart failure (HF) risk stratification remain elusive. Portable devices capable of recording single-lead electrocardiograms (ECGs) may enable large-scale community-based risk assessment.
Objective: To evaluate whether an artificial intelligence (AI) algorithm can predict HF risk from noisy single-lead ECGs.
Design, Setting, And Participants: A retrospective cohort study of individuals without HF at baseline was conducted among individuals with conventionally obtained outpatient ECGs in the integrated Yale New Haven Health System (YNHHS) and prospective population-based cohorts of the UK Biobank (UKB) and the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Data analysis was performed from September 2023 to February 2025.
Exposure: AI-ECG-defined risk of left ventricular systolic dysfunction (LVSD).
Main Outcomes And Measures: Among individuals with ECGs, lead I ECGs were isolated and a noise-adapted AI-ECG model (to simulate ECG signals from wearable devices) trained to identify LVSD was deployed. The association of the model probability with new-onset HF, defined as the first HF hospitalization, was evaluated. The discrimination of AI-ECG was compared against 2 risk scores for new-onset HF (Pooled Cohort Equations to Prevent Heart Failure [PCP-HF] and Predicting Risk of Cardiovascular Disease Events [PREVENT] equations) using the Harrel C statistic, integrated discrimination improvement, and net reclassification improvement.
Results: There were 192 667 YNHHS patients (median [IQR] age, 56 [41-69] years; 111 181 women [57.7%]), 42 141 UKB participants (median [IQR] age, 65 [59-71] years; 21 795 women [51.7%]), and 13 454 ELSA-Brasil participants (median [IQR] age, 51 [45-58] years; 7348 women [54.6%]) with baseline ECGs. A total of 3697 (1.9%) developed HF in YNHHS over a median (IQR) of 4.6 (2.8-6.6) years, 46 (0.1%) in UKB over a median (IQR) of 3.1 (2.1-4.5) years, and 31 (0.2%) in ELSA-Brasil over a median (IQR) of 4.2 (3.7-4.5) years. A positive AI-ECG screening result for LVSD was associated with a 3- to 7-fold higher risk for HF, and each 0.1 increment in the model probability was associated with a 27% to 65% higher hazard across cohorts, independent of age, sex, comorbidities, and competing risk of death. AI-ECG's discrimination for new-onset HF was 0.723 (95% CI, 0.694-0.752) in YNHHS, 0.736 (95% CI, 0.606-0.867) in UKB, and 0.828 (95% CI, 0.692-0.964) in ELSA-Brasil. Across cohorts, incorporating AI-ECG predictions alongside PCP-HF and PREVENT equations was associated with a higher Harrel C statistic (difference in addition to PCP-HF, 0.080-0.107; difference in addition to PREVENT, 0.069-0.094). AI-ECG had an integrated discrimination improvement of 0.091 to 0.205 vs PCP-HF and 0.068 to 0.192 vs PREVENT; it had a net reclassification improvement of 18.2% to 47.2% vs PCP-HF and 11.8% to 47.5% vs PREVENT.
Conclusions And Relevance: Across multinational cohorts, a noise-adapted AI-ECG model estimated HF risk using lead I ECGs, suggesting a potential HF risk-stratification strategy requiring prospective study using wearable and portable ECG devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12004248 | PMC |
http://dx.doi.org/10.1001/jamacardio.2025.0492 | DOI Listing |
J Palliat Care
September 2025
Department of Healthcare Administration and Policy, School of Public Health, University of Nevada, Las Vegas, NV, USA.
ObjectivesRecently, atrial fibrillation (AF) has contributed to an increase in cardiovascular deaths in the U.S. Palliative care (PC) and atrial ablation (AA) procedure can elevate quality of life of high-risk AF patients, who are associated with multiple comorbidities.
View Article and Find Full Text PDFPLoS One
September 2025
Biobank of Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
Heart failure (HF) and lung cancer (LC) often coexist, yet their shared molecular mechanisms are unclear. We analyzed transcriptome data from the NCBI Gene Expression Omnibus (GEO) database (GSE141910, GSE57338) to identify 346 HF‑related differentially expressed genes (DEGs), then combined weighted gene co-expression network analysis (WGCNA) pinpointed 70 hub candidates. Further screening of these 70 hub candidates in TCGA lung cancer cohorts via LASSO, Random Forest, and multivariate Cox regression suggested CYP4B1 as the only independent prognostic marker.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Cardiology, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, Fujian, China.
Introduction: Kidney stone disease is associated with numerous cardiovascular risk factors. However, the findings across studies are non-uniformly consistent, and the control of confounding variables remains suboptimal. This study aimed to investigate the association between kidney stone and cardiovascular disease.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
September 2025
Division of Pediatric Critical Care, Department of Pediatrics, University of California, San Francisco, USA.
Right ventricular (RV) failure is the primary cause of death among patients with pulmonary arterial hypertension (PAH). Patients with congenital heart disease-associated PAH (CHD-PAH) demonstrate improved outcomes compared to patients with other forms of PAH, which is related to the maintenance of an adaptively hypertrophied RV. In an ovine model of CHD-PAH, we aimed to elucidate the cellular, microvascular, and transcriptional adaptations to congenital pressure overload that support RV function.
View Article and Find Full Text PDFJCI Insight
September 2025
Department of Pharmacology, University of Michigan, Ann Arbor, United States of America.
Cardiac hypertrophy is a common adaptation to cardiovascular stress and often a prelude to heart failure. We examined how S-palmitoylation of the small GTPase, Ras-related C3 botulinum toxin substrate 1 (Rac1), impacts cardiomyocyte stress signaling. Mutation of the cysteine-178 palmitoylation site impaired activation of Rac1 when overexpressed in cardiomyocytes.
View Article and Find Full Text PDF