98%
921
2 minutes
20
Hyperlipidemia, a major risk factor for cardiovascular diseases, is associated with limitations in clinical lipid-lowering medications. Drug repurposing strategies expedite the research process and mitigate development costs, offering an innovative approach to drug discovery. This study employed systematic literature and guidelines review to compile a training set comprising 176 lipid-lowering drugs and 3254 non-lipid-lowering drugs. Multiple machine learning models were developed to predict the lipid-lowering potential of drugs. A multi-tiered validation strategy was implemented, encompassing large-scale retrospective clinical data analysis, standardized animal studies, molecular docking simulations and dynamics analyses. Through a comprehensive screening analysis utilizing machine learning, 29 FDA-approved drugs with lipid-lowering potential were identified. Clinical data analysis confirmed that four candidate drugs, with Argatroban as the representative, demonstrated lipid-lowering effects. In animal experiments, the candidate drugs significantly improved multiple blood lipid parameters. Molecular docking and dynamics simulations elucidated the binding patterns and stability of candidate drugs in interaction with related targets. We successfully identified multiple non-lipid-lowering drugs with lipid-lowering potential by integrating state-of-the-art machine learning techniques with multi-level validation methods, thereby providing new insights into lipid-lowering drugs, establishing a paradigm for AI-based drug repositioning research, and expanding the repertoire of lipid-lowering medications available to clinicians.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12373879 | PMC |
http://dx.doi.org/10.1038/s41401-025-01539-1 | DOI Listing |
J Clin Invest
September 2025
The University of Texas at Austin, Austin, United States of America.
Background: Following SARS-CoV-2 infection, ~10-35% of COVID-19 patients experience long COVID (LC), in which debilitating symptoms persist for at least three months. Elucidating biologic underpinnings of LC could identify therapeutic opportunities.
Methods: We utilized machine learning methods on biologic analytes provided over 12-months after hospital discharge from >500 COVID-19 patients in the IMPACC cohort to identify a multi-omics "recovery factor", trained on patient-reported physical function survey scores.
Proc Natl Acad Sci U S A
September 2025
Max Planck Institute for Solar System Research, Göttingen 37077, Germany.
Turbulent convection governs heat transport in both natural and industrial settings, yet optimizing it under extreme conditions remains a significant challenge. Traditional control strategies, such as predefined temperature modulation, struggle to achieve substantial enhancement. Here, we introduce a deep reinforcement learning (DRL) framework that autonomously discovers optimal control policies to maximize heat transfer in turbulent Rayleigh-Bénard convection.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
September 2025
Division of Plastic and Reconstructive Surgery, Neonatal and Pediatric Craniofacial Airway Orthodontics, Department of Surgery, Stanford University School of Medicine, 770 Welch Road, Palo Alto, CA, 94394, USA.
Background: Alveolar molding plate treatment (AMPT) plays a critical role in preparing neonates with cleft lip and palate (CLP) for the first reconstruction surgery (cleft lip repair). However, determining the number of adjustments to AMPT in near-normalizing cleft deformity prior to surgery is a challenging task, often affecting the treatment duration. This study explores the use of machine learning in predicting treatment duration based on three-dimensional (3D) assessments of the pre-treatment maxillary cleft deformity as part of individualized treatment planning.
View Article and Find Full Text PDFHepatol Int
September 2025
Department of Biomedical Informatics and Data Science, Yale School of Medicine, PO Box 208009, New Haven, CT, 06520-8009, USA.
Int J Cardiovasc Imaging
September 2025
Klinikum Fürth, Friedrich-Alexander-University Erlangen- Nürnberg, Fürth, Germany.
Myocarditis is an inflammation of heart tissue. Cardiovascular magnetic resonance imaging (CMR) has emerged as an important non-invasive imaging tool for diagnosing myocarditis, however, interpretation remains a challenge for novice physicians. Advancements in machine learning (ML) models have further improved diagnostic accuracy, demonstrating good performance.
View Article and Find Full Text PDF