98%
921
2 minutes
20
Sodium metal, regarded as an ideal anode material for high-energy-density rechargeable sodium metal batteries (SMBs), faces critical challenges, such as sluggish Na transport kinetics and uncontrolled dendritic growth, which severely hinder its cycling stability and practical applications. Herein, the well-designed, multifunctional separator, UFS2@GF, constructed using metal-organic frameworks functionalized with fluorinated (-F) and sulfonic acid (-SOH) groups, synergistically provides more nucleation sites for Na deposition, thereby reducing the nucleation overpotential and achieving uniform deposition. The inorganic-rich solid electrolyte interphase induced by UFS2 facilitates a uniform Na flux and enhances charge transfer efficiency. Structural characterization and density functional theory calculations further demonstrate that the introduction of abundant sodiophilic sites provided by -F and -SOH significantly enhances Na transport kinetics by reducing the energy barriers for Na migration within the UFS2 framework, leading to a higher Na transference number, superior ionic conductivity, and accelerated ion transport. Because of these synergistic effects, the symmetric cell with UFS2@GF achieves stable performance, enabling stable cycling for over 2500 h at 0.25 mA cm while delivering an excellent specific capacity of 87.3 mA h g at 10C in Na∥NaV(PO) cells. These results highlight the critical role of synergistic functional group strategies in addressing the limitations of SMBs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.5c04051 | DOI Listing |
J Chromatogr A
August 2025
Department Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry, South China Normal University, Guangzhou 510006 Guangdong, PR China. Electronic address:
Zearalenone (ZEN), a mycotoxin produced by fungi of the genus Fusarium, is widely present in animal feeds and human foods, posing a serious hazard to human health. Herein, a zearalenone aptamer-functionalized magnetic metal-organic framework material (ZEN-Apt@MMIL-100(Fe)) was constructed and applied for the rapid enrichment of ZEN, coupled with high-performance liquid chromatography (HPLC) for ultrasensitive detection. By a self-templating method, magnetic MIL-100(Fe) was formed by self-assembly of sodium citrate-modified FeO particles as nuclei with homobenzoic acid, which was bonded to amino-modified zearalenone nucleic acid aptamer via amide reaction to realize a specific recognition function.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China.
Hard carbon (HC) has emerged as a promising anode material for sodium-ion batteries (SIBs) owing to its low cost, abundant renewable resources, and high specific capacity. However, its practical application is significantly hindered by the severe initial irreversible capacity loss resulting from sodium consumption during the first cycle. To address this issue, a variety of presodiation strategies have been developed to compensate for the sodium loss and improve the initial coulombic efficiency.
View Article and Find Full Text PDFBeilstein J Org Chem
August 2025
A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, INEOS, Vavilova St. 28, Moscow, 119334, Russia.
Reducing agents with phosphorus-hydrogen bond, such as sodium hypophosphite, phosphite, and hypophosphorous acid are commercially available in bulk amounts, however, their usage is understudied in organic processes. While NaHPO has proved to be an efficient four-electron reductant in the catalyst-free reductive amination, the influence of cation in hypophosphite salt has not been studied yet. This issue is a fundamentally important factor.
View Article and Find Full Text PDFChem Sci
September 2025
College of Chemistry and Materials Engineering, Wenzhou University Wenzhou Zhejiang 325035 P. R. China
Sodium-ion batteries (SIBs) are promising alternatives to lithium-ion batteries (LIBs) owing to abundant resources and cost-effectiveness. However, cathode materials face persistent challenges in structural stability, ion kinetics, and cycle life. This review highlights the transformative potential of high-entropy (HE) strategies that leveraging multi-principal element synergies to address these limitations entropy-driven mechanisms.
View Article and Find Full Text PDFVet World
July 2025
Laboratory of Immunochemistry and Immunobiotechnology, National Center for Biotechnology, 010000, Astana, Kazakhstan.
Background And Aim: Bovine babesiosis, caused by , poses significant economic challenges to Kazakhstan's cattle industry. Early and accurate detection is crucial for interrupting transmission cycles, particularly in regions lacking advanced diagnostic infrastructure. This study aimed to develop a rapid lateral flow immunoassay (LFIA) using a recombinant C-terminal fragment of the recombinant rhoptry-associated protein 1 (rRap1) antigen for the serodiagnosis of bovine babesiosis.
View Article and Find Full Text PDF