Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The gastrointestinal tract is continuously exposed to foreign antigens in food and commensal microorganisms with potential to induce adaptive immune responses. Peripherally induced T regulatory (pT) cells are essential for mitigating inflammatory responses to these agents. Although RORγt antigen-presenting cells (APCs) have been shown to programme gut microbiota-specific pT cells, their definition remains incomplete, and the APC responsible for food tolerance has remained unknown. Here we identify an APC subset that is required for differentiation of both food- and microbiota-specific pT cells and for establishment of oral tolerance. Development and function of these APCs require expression of the transcription factors PRDM16 and RORγt, as well as a unique Rorc(t) cis-regulatory element. Gene expression, chromatin accessibility, and surface marker analysis establish the pT-inducing APCs as myeloid in origin, distinct from type 3 innate lymphoid cells, and sharing epigenetic profiles with classical dendritic cells, and designate them PRDM16RORγt tolerizing dendritic cells (tolDCs). Upon genetic perturbation of tolDCs, we observe a substantial increase in food antigen-specific T helper 2 cells in lieu of pT cells, leading to compromised tolerance in mouse models of asthma and food allergy. Single-cell analyses of freshly resected mesenteric lymph nodes from a human organ donor, as well as multiple specimens of human intestine and tonsil, reveal candidate tolDCs with co-expression of PRDM16 and RORC and an extensive transcriptome shared with tolDCs from mice, highlighting an evolutionarily conserved role across species. Our findings suggest that a better understanding of how tolDCs develop and how they regulate T cell responses to food and microbial antigens could offer new insights into developing therapeutic strategies for autoimmune and allergic diseases as well as organ transplant tolerance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12176658PMC
http://dx.doi.org/10.1038/s41586-025-08982-4DOI Listing

Publication Analysis

Top Keywords

cells
10
antigen-presenting cells
8
microbiota-specific cells
8
dendritic cells
8
tolerance
5
food
5
toldcs
5
prdm16-dependent antigen-presenting
4
cells induce
4
induce tolerance
4

Similar Publications

Gliomas are malignant tumors of the central nervous system, and one severe variant is called gliosarcoma. Photodynamic therapy (PDT) is a technique that stands out in the oncology area for minimizing side effects for the patient, triggering cell death at the site of irradiation, and can be used concomitantly with conventional treatments. This study aimed to evaluate the interaction of chlorine e6 with the cytoskeleton and mitochondria, as well as morphological changes and the death mechanism triggered after PDT.

View Article and Find Full Text PDF

Astragaloside IV Binds with RhoA, Inhibits EndMT and Ameliorates Myocardial Fibrosis in Mice.

Am J Chin Med

September 2025

Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.

Astragaloside IV (ASIV), the main active component of the traditional Chinese medicine HuangQi, exhibits ameliorating effects on myocardial fibrosis through unclear mechanisms. To investigate the effects of ASIV on Endothelial-to-mesenchymal transition (EndMT) in myocardial fibrosis, 10 ng/mL TGF-β1 was used to induce EndMT in human umbilical vein endothelial cells (HUVECs) and a 5 mg/kg/d subcutaneous injection of Isoproterenol (ISO) was used to induce myocardial fibrosis in mice . The drug affinity-responsive target stability (DARTS) was used to identify the target proteins of ASIV in endothelial cells.

View Article and Find Full Text PDF

Berberine (BBR) is an isoquinoline alkaloid with a variety of biological activities, including anti-microbial and anti-tumoral activities. However, the cellular targets of BBR and the roles of BBR in the radiosensitivity of breast cancer cells are not well defined. In this study, we investigated the effects of BBR on the radiosensitivity of BT549 triple-negative breast cancer cells.

View Article and Find Full Text PDF

Ferroptosis, a controlled cell death influenced by iron-dependent lipid peroxidation, presents potential therapeutic targets for cancer treatment due to its unique molecular pathways and potential drug resistance. Natural compounds, such as polyphenols, flavonoids, terpenoids and alkaloids, can influence ferroptosis via important signalling pathways, such as Nrf2/Keap1, p53, and GPX4. These are promising for combinational therapy due to their ability to cause ferroptotic death in cancer cells, exhibit tumour-specific selectivity and reduce systemic toxicity.

View Article and Find Full Text PDF

GADD45A is Essential for Granulosa Cells Differentiation and Ovarian Reserve in Human and Mice.

J Cell Mol Med

September 2025

Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.

Diminished ovarian reserve (DOR) poses significant challenges in reproductive health, with emerging evidence implicating DNA damage repair pathways. While GADD45A is a critical regulator of DNA repair, cell cycle and apoptosis, its role in DOR pathogenesis remains unexplored. We employed transcriptome sequencing, qPCR and Western Blot analyses to compare GADD45A expression in granulosa cells (GCs) between DOR patients and controls.

View Article and Find Full Text PDF