Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Transition metal oxides hold great promise across a wide range of applications due to favorable properties such as high abundance, low toxicity, and excellent stability. Nanoengineering approaches are essential for controlling the structural, optical, and electronic properties of these materials, enabling the achievement of desired characteristics in a cost-effective and environmentally friendly manner. In this study, we synthesize stoichiometric (WO) and sub-stoichiometric (WO) tungsten oxide nanowires by controlling their phases and morphologies through the hydrothermal method. This approach allows us to systematically investigate the effects of different phases and oxygen vacancies on the optical properties, as well as on photocatalytic and supercapacitance applications. We use the photodegradation of RhB as a benchmark for photocatalytic activity under various experimental conditions, revealing that oxygen vacancies significantly influence photocatalytic behavior. For example, WO nanowires adsorb/degrade a substantial amount of RhB within short durations under ambient conditions, where WO nanowires are mostly inactive. The addition of HO enhances the photocatalytic performance of WO nanowires over 30 minutes, with even better results under low pH conditions with HO. This study also explores the phase-dependent electrochemical properties of WO and WO nanowires, providing insights into their potential for improved supercapacitor performance by leveraging their complementary properties in symmetric and asymmetric configurations. WO, with a higher density of oxygen vacancies and thinner structure, offers enhanced conductivity and increased active sites for charge storage, resulting in superior specific capacitance and charge retention.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d5dt00212eDOI Listing

Publication Analysis

Top Keywords

oxygen vacancies
12
tungsten oxide
8
oxide nanowires
8
properties
6
nanowires
6
photocatalytic
5
phase-dependent optical
4
optical photocatalytic
4
photocatalytic capacitive
4
capacitive properties
4

Similar Publications

Atomic point defects provide an alternative tuning knob for engineering the properties and functionality of 2D transition metal dichalcogenides (TMDs). Prior to engineering point defects to tailor material properties, identification and investigation of their electronic structure is key to their implementation for device applications. The two most common atomic point defects in monolayer WS are sulfur vacancies and oxygen substituents, which have been thoroughly reported on, but their interaction has yet to be investigated.

View Article and Find Full Text PDF

Optically Controlled Memristor Enabling Synergistic Sensing-Memory-Computing for Neuromorphic Vision Systems.

Adv Mater

September 2025

Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, College of Electronic and Information Engineering, Hebei University, Baoding, 071002, China.

Neuromorphic Visual Devices hold considerable promise for integration into neuromorphic vision systems that combine sensing, memory, and computing. This potential arises from their synergistic benefits in optical signal detection and neuro-inspired computational processes. However, current devices face challenges such as insufficient light/dark resistance ratios, mismatched transient photo-response, and volatile retention characteristics, limiting their adaptability to complex artificial vision systems.

View Article and Find Full Text PDF

Effect of Ni-Doped Induced Stacking Faults on the NTC Properties and Aging Stability of LaNdAlNiO Ceramics.

Small

September 2025

State Key Laboratory of Functional Materials and Devices for Special Environments Conditions, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry of CAS, Urumqi, 830011, P. R. China.

Owing to its wide bandgap, LaAlO has garnered extensive attention in the field of high-temperature negative temperature coefficient (NTC) thermistors. However, its poor thermal stability and excessively high B value limit the working temperature range. In this work, introducing O 2p and Ni 3d hybrid energy levels into the bandgap is proposed via Ni doping and inducing stacking faults in the crystal structure to narrow the bandgap and enhance aging performance.

View Article and Find Full Text PDF

Herein, 1,3,5-benzenetricarboxylate (BTC) intercalation and oxygen vacancy engineering are proposed to enhance the electrochemical performance of layered double hydroxide (LDH) nanosheets. The optimized LDH exhibits a remarkable capacity of 426 mAh g at 3 A g and 70% capacity retention after 15 000 cycles, attributed to improved ion transport, abundant active sites, and structural stability.

View Article and Find Full Text PDF

Density Functional Theory Study of Iron-Oxygen Divacancies in Magnetite (FeO) and Hematite (FeO).

J Phys Chem C Nanomater Interfaces

September 2025

Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States.

Density functional theory (DFT) calculations are employed to investigate the formation energies, charge redistribution, and binding energies of iron-oxygen divacancies in magnetite (FeO) and hematite (FeO). For magnetite, we focus on the low-temperature phase to explore variations with local environments. Building on previous DFT calculations of the variations in formation energies for oxygen vacancies with local charge and spin order in magnetite, we extend this analysis to include octahedral iron vacancies before analyzing the iron-oxygen divacancies.

View Article and Find Full Text PDF