98%
921
2 minutes
20
Objectives: Aerobic exercise training can increase skeletal muscle mitochondrial content. Supine exercise training with legs above the heart potentially augments these increases. However, the impact of supine exercise training on mitochondrial biogenesis and cardiovascular adaptations remains unclear.
Methods: In this single-centred, randomized, parallel arm trial, 19 recreationally active individuals underwent seven sessions of either supine with legs up (SUP; n=9, 6 females) or upright with legs down (UP; n=10, 7 females) aerobic training on a recumbent bike at 71 ± 7 % and 71 ± 2 % of peak work rate (WR), respectively. The study aimed to test the effects of training with decreased muscle oxygenation on indices of muscle mitochondrial remodelling. Secondary outcomes included exercise performance, muscle oxygenation, and cardiovascular responses.
Results: Secondary outcomes revealed significant interaction effects for time to fatigue (TTF) and WR in the SUP group during supine testing, suggesting enhanced exercise tolerance and performance. No between group interaction effects were observed for upright testing. No clear effects on mitochondrial biogenesis were observed based on expression of mitochondrial protein subunits and transcriptional regulators. Acutely, HR was lower during the SUP Test compared to the UP Test. No central cardiovascular adaptations were observed following training.
Conclusions: Our exploratory analyses showed that supine aerobic training more effectively improves supine exercise tolerance and performance compared with upright training, despite no differences in measured proteins related to mitochondrial biogenesis. Further research is needed to elucidate the mechanisms underlying these postural-specific training effects.
Registration: clinicaltrials.gov: NCT04151095.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11987498 | PMC |
http://dx.doi.org/10.1515/teb-2025-0002 | DOI Listing |
Alzheimers Res Ther
September 2025
Motor Control and Learning Group, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Leopold-Ruzicka-Weg 4, Zurich, 8093, Switzerland.
J Epidemiol
September 2025
Faculty of Sport Sciences, Waseda University.
Background: Brief measures of 24-hour movement behaviors are needed to easily evaluate their durations. The present study investigated the criterion validity and test-retest reliability of a brief self-report instrument to assess 24-hour movement behaviors.
Methods: A paper-based self-administered questionnaire was used to assess sleep, sedentary behavior (SB), light-intensity physical activity (LPA), and moderate-to-vigorous physical activity (MVPA) with four items in 35 healthy adults.
Anal Chim Acta
November 2025
State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China. Electronic address:
Background: During intense exercise, anaerobic metabolism predominantly produces energy in the body, resulting in lactic acid (LA) accumulation, which contributes to muscle fatigue and soreness and may also impair neurological and cardiovascular functions. In endurance sports, the lactate threshold (LT) is a key indicator of an athlete's capacity to clear and utilize LA, directly influencing athletic performance and endurance. Therefore, LA detection is crucial for assessing the physical condition of both athletes and the general population, as well as for optimizing training programs.
View Article and Find Full Text PDFArch Phys Med Rehabil
September 2025
Department of Physical Therapy, University of Delaware, Newark, DE, USA; Biomechanics and Movement Science Program, University of Delaware, Newark, DE, USA. Electronic address:
Objective: To examine if exercise intensity, quantified as heart rate or training speed, predicts walking outcomes in people with chronic stroke.
Design: This is a secondary analysis from a larger randomized clinical trial ("PROWALKS"; NIH1R01HD086362).
Setting: Four, outpatient rehabilitation clinics.
J Pediatr Surg
September 2025
Division of Pediatric General and Thoracic Surgery, Seattle Children's Hospital, 4800 Sand Point Way NE, Ocean 9.A.220, Seattle, WA 98105, USA; Department of Surgery, University of Washington, 1959 Pacific Street, Box 356410, Seattle, WA 98195, USA.
Purpose: First rib fractures in children are typically associated with high-impact trauma; atraumatic etiologies remain understudied. The purpose of this study is to evaluate the presentation and management of pediatric first rib fractures in the absence of major trauma.
Methods: This is a retrospective study of pediatric patients diagnosed with first rib fractures between 2000-2023 at a quaternary, free-standing children's hospital.