98%
921
2 minutes
20
Introduction: Africa, home to 1.4 billion people and the highest genetic diversity globally, harbors unique genetic variants crucial for understanding complex diseases like neurodegenerative disorders. However, African populations remain underrepresented in induced pluripotent stem cell (iPSC) collections, limiting the exploration of population-specific disease mechanisms and therapeutic discoveries.
Methods: To address this gap, we established an open-access African Somatic and Stem Cell Bank.
Results: In this initial phase, we generated 10 rigorously characterized iPSC lines from fibroblasts representing five Nigerian ethnic groups and both sexes. These lines underwent extensive profiling for pluripotency, genetic stability, differentiation potential, and Alzheimer's disease and Parkinson's disease risk variants. Clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 technology was used to introduce frontotemporal dementia-associated MAPT mutations (P301L and R406W).
Discussion: This collection offers a renewable, genetically diverse resource to investigate disease pathogenicity in African populations, facilitating breakthroughs in neurodegenerative research, drug discovery, and regenerative medicine.
Highlights: We established an open-access African Somatic and Stem Cell Bank. 10 induced pluripotent stem cell lines from five Nigerian ethnic groups were rigorously characterized. Clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 technology was used to introduce frontotemporal dementia-causing MAPT mutations. The African Somatic and Stem Cell Bank is a renewable, genetically diverse resource for neurodegenerative research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11992592 | PMC |
http://dx.doi.org/10.1002/alz.70145 | DOI Listing |
Stem Cell Res
September 2025
Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf 40225, Germany. Electronic address:
Pathogenic variants in the gene COQ4 cause primary coenzyme Q deficiency, which is associated with symptoms ranging from early epileptic encephalopathy up to adult-onset ataxia-spasticity spectrum disease. We genetically modified commercially available wild-type iPS cells by using a CRISPR/Cas9 approach to create heterozygous and homozygous isogenic cell lines carrying the disease-causing COQ4 variants c.458C > T, p.
View Article and Find Full Text PDFAnnu Rev Pathol
September 2025
3Department of Pathology, Stanford University, Stanford, California, USA;
Clonal hematopoiesis, originally identified as a precursor to hematologic malignancies, has emerged as a significant factor in various nonmalignant diseases. Recent research highlights how somatic mutations in hematopoietic stem cells lead to the expansion of circulating mutated immune cells that exert profound effects on organ function and disease progression. These mutated clones display altered inflammatory profiles and tissue-specific functional consequences, contributing to various diseases including atherosclerotic cardiovascular disease, osteoporosis, heart failure, and neurodegenerative conditions.
View Article and Find Full Text PDFCells
September 2025
Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy.
The journal retracts the article titled "Multipotent Stromal Cells from Subcutaneous Adipose Tissue of Normal Weight and Obese Subjects: Modulation of Their Adipogenic Differentiation by Adenosine A Receptor Ligands" [...
View Article and Find Full Text PDFBraz Oral Res
September 2025
Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Pediatric Dentistry, Ribeirão Preto, SP, Brazil.
Tumor necrosis factor-alpha (TNF-α) is a cytokine involved in the immune-inflammatory response. It can induce an odontoblastic phenotype and enhance biomineralization in dental pulp mesenchymal stem cells but does not have the same effect on osteoblasts. The reasons for this differential response, despite the shared lineage of these cell types, are not yet clear.
View Article and Find Full Text PDFPLoS One
September 2025
Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
Crosstalk between leukemic cells and their surrounding mesenchymal stromal cells (MSCs) in the bone marrow microenvironment is crucial for the pathogenesis of myelodysplastic syndromes (MDS) and is mediated by extracellular vesicles (EVs). The EV-specific miRNAs derived from MDS-MSCs remain poorly explored. EVs isolated from HS-5, an immortalized stromal cell line, promoted the proliferation and 5-azacytidine (AZA) resistance of SKM-1 cells.
View Article and Find Full Text PDF