98%
921
2 minutes
20
We demonstrate for what we believe to be the first time the efficient acquisition of spin wave Brillouin spectra with a virtually imaged phase array-based spectrometer and an etalon-based notch filter. Thermally excited magnons in a 5 nm epitaxially grown single-crystalline FeCo film are detectable within 100 ms and a signal-to-noise ratio greater than 100 is achieved in 10 seconds with a spectral resolution of 0.45 GHz and a pump power of 23 mW. The dependence of the Brillouin shift on the externally applied magnetic field is characterized for fields ranging from 29 to 370 mT, and the effective magnetization is estimated to be 1.6 ± 0.1 MA/m. A 2D map of the spatial variation of the Brillouin shift obtained in a non-uniform magnetic field demonstrates the suitability of virtually imaged phase array-based instrumentation for imaging spin wave propagation in magnonic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.542374 | DOI Listing |
J Inorg Biochem
September 2025
National Renewable Energy Laboratory, Biosciences Center, Golden, CO, USA. Electronic address:
Flavin-based electron bifurcation (FBEB) is employed by microorganisms for controlling pools of redox equivalents by reversibly splitting electron pairs into high- and low-energy levels from an initial midpoint potential. Our ability to harness this phenomenon is crucial for biocatalytic design which is limited by our understanding of energy coupling in the bifurcation system. In Pyrococcus furiosus, FBEB is carried out by the NADH-dependent ferredoxin:NADP-oxidoreductase (NfnSL), coupling the uphill reduction of ferredoxin in NfnL to the downhill reduction of NAD in NfnS from oxidation of NADPH.
View Article and Find Full Text PDFAdv Mater
September 2025
Dept. of Physics, Pennsylvania State University, University Park, PA, 16802, USA.
Altermagnets are a newly identified family of collinear antiferromagnets with a momentum-dependent spin-split band structure of non-relativistic origin, derived from spin-group symmetry-protected crystal structures. Among candidate altermagnets, CrSb is attractive for potential applications because of a large spin-splitting near the Fermi level and a high Néel transition temperature of around 700 K. Molecular beam epitaxy is used to synthesize CrSb (0001) thin films with thicknesses ranging from 10 to 100 nm.
View Article and Find Full Text PDFMagn Reson Chem
September 2025
Servei de Ressonància Magnètica Nuclear, Facultat de Ciències i Biosciències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia, Spain.
Photo-chemically induced dynamic nuclear polarisation (photo-CIDNP) is a nuclear spin-selective magnetic resonance phenomenon that has traditionally been used to mechanistically study chemical reactions involving the (transient) formation of radical molecular species, extract EPR observables of short-lived radicals, probe biomolecular structure and interactions and, less importantly, increase the sensitivity of a nuclear magnetic resonance (NMR) measurement. Recently, the introduction of significant methodological advances as well as the advent of benchtop NMR spectroscopy has rekindled interest in this technique, which-serendipitously discovered more than half a century ago-has, as of late, matured into a powerful, highly sensitive and extremely versatile NMR hyperpolarisation method. In this tutorial, aimed primarily at the nonexpert user, we provide practical information on how to plan, set up and perform one-dimensional H and heteronuclear photo-CIDNP NMR experiments using a high-field NMR spectrometer and a continuous-wave (CW) illuminant.
View Article and Find Full Text PDFJ Chem Theory Comput
September 2025
Institute of Physical Chemistry, University of Freiburg, Albertstraß e 21, 79104 Freiburg, Germany.
The accurate computation of high-spin/low-spin gaps remains a challenging task in computational chemistry, with significant implications for both theoretical studies and experimental applications. In this work, we present an exchange-dedicated perturbation theory (EDPT2) that allows an efficient calculation of exchange couplings in magnetic systems. Our approach builds on a previously developed second-order perturbative scheme based on de Loth's formalism but refines the treatment of singlet wave functions by explicitly incorporating ionic determinants in the zeroth-order description.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
August 2025
Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China. Electronic address:
Spin waves, as carriers of information in magnetic materials, hold great potential for information transmission and storage. However, the spin wave signals are generally weak, limiting both detection and practical application. Herein, we report a Raman spectroscopy study of the interference-enhanced Raman scattering (IERS) on the spin wave signal in nickel oxide (NiO) nanosheets on the SiO/Al substrate.
View Article and Find Full Text PDF