98%
921
2 minutes
20
Rotaxanes, belonging to the class of classical mechanically interlocked molecules (MIMs), exhibit chiral properties that diverge from those of traditional chiral elements, particularly displaying mechanically planar chirality. Their distinctive spatial structure further augments their chiral significance, thereby imparting them with vast potential for applications in the realm of chiral materials and asymmetric catalysis. In recent years, mechanically planar chiral rotaxanes have garnered increasing attention from researchers. In this review, we summarize the recent advancements in obtaining enantiopure mechanically planar chiral rotaxanes. In this regard, chiral separation techniques, the use of chiral auxiliaries, and asymmetric catalytic synthesis have emerged as potent methodologies for constructing chiral rotaxanes, thereby enabling the synthesis of diverse types of mechanically planar chiral rotaxanes. Additionally, we analyze the current challenges faced in this field and look forward to the future development opportunities that lie ahead.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202500898 | DOI Listing |
Natl Sci Rev
September 2025
College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China.
The stress distribution in Li metal strongly affects the interfacial Li-ion diffusion, thereby influencing the morphology of plated Li and the performance of the battery. Here, we report a mechano-electrochemical coupling strategy that utilizes an arched structured carbon aerogel to achieve stable Li-plating/stripping electrochemistry. The arch-structured carbon aerogel can actively regulate stress distributions in response to the compressive stresses induced by Li deposition, generating the transition of stress from compressive on the convex surface to tensile on the concave surface, which can effectively promote the Li-migration kinetics and thus suppress the non-uniform deposition of Li.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China.
The development of ultrablack coatings with exceptional absorption (>98%) has historically faced significant scientific and engineering challenges, primarily due to limitations in material selection, structural design, and practical durability. Considering the difficulties in practical applications of ultrablack materials with micro/nano structures and the limitations of planar ultrablack coatings in optical performance, we introduce an innovative integration of conventional planar ultrablack coatings with a specifically engineered trilayer antireflection architecture. This hybrid system incorporates a refractive index distribution (1.
View Article and Find Full Text PDFPLoS Biol
September 2025
National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
Morphogenetic information arises from a combination of genetically encoded cellular properties and emergent cellular behaviors. The spatio-temporal implementation of this information is critical to ensure robust, reproducible tissue shapes, yet the principles underlying its organization remain unknown. We investigated this principle using the mouse auditory epithelium, the organ of Corti (OC).
View Article and Find Full Text PDFInorg Chem
September 2025
Department of Chemistry, Panskura Banamali College, Panskura RS, Purba Medinipur, WB 721152, India.
We report the synthesis and characterization of a new Schiff base ligand (HL), derived from 2-picolylamine and 2-hydroxy-3-methoxy-5-methylbenzaldehyde. Its reaction with Ni(NO)·6HO and Ln(NO)·HO (Ln = Gd, Tb, Dy) in the presence of triethylamine affords a carbonato-bridged family of heterobimetallic NiLn complexes: [NiLn(L)(L')(μ-CO)(NO)]·MeOH·HO (). During the complexation reaction, ligand HL undergoes an oxidation, followed by C-C coupling to generate a secondary ligand (HL').
View Article and Find Full Text PDFJ Chem Phys
September 2025
Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.
The mechanical properties of graphene are investigated using classical molecular dynamics simulations as a function of temperature T and external stress τ. The elastic response is characterized by calculating elastic constants via three complementary methods: (i) numerical derivatives of stress-strain curves, (ii) analysis of cell fluctuation correlations, and (iii) phonon dispersion analysis. Simulations were performed with two interatomic models: an empirical potential and a tight-binding electronic Hamiltonian.
View Article and Find Full Text PDF