98%
921
2 minutes
20
Introduction: Airway remodeling in bronchial asthma can be inhibited by disrupting the epithelial mesenchymal transition (EMT) of activated airway epithelial cells. Exosomes, as key mediators of intercellular communication, have been implicated in the pathophysiology of asthma-related airway inflammation, remodeling, and hyperresponsiveness. This study aimed to investigate the role of M2 macrophage-derived exosomes (M2φ-exos) in modulating TGF-β1-induced EMT in airway epithelial (BEAS-2B) cells and elucidate the underlying molecular mechanism, if any.
Methods: THP-1 cells were induced to differentiate into M2 macrophages via phorbol 12-myristate 13-acetate (PMA) and IL-4. Exosomes were subsequently isolated and purified via ultracentrifugation. M2φ-exos expression was characterized by protein marker levels, transmission electron microscopy imaging, and nanoparticle tracking analysis. TGF-β1-induced BEAS-2B cells were exposed to M2φ-exos to determine the latter's effects.
Results: THP-1 cells were successfully differentiated into M2 macrophages, as confirmed by in vitro flow cytometry. The isolated exosomes presented typical cup-shaped structures and expressed CD81 and TSG101. TGF-β1 induction altered the morphological characteristics of BEAS-2B cells and activated the TGF-βRI/Smad2/3 signaling pathway, leading to increased expression of Snail, Vimentin and Collagen 1 and decreased expression of E-cadherin. After exosome or SB431542 induction, TGF-β1-induced EMT was reversed. GW4869, an exosome release inhibitor, exhibited the ability to block the beneficial effects of exosomes.
Conclusion: M2Φ-exos inhibited EMT in BEAS-2B cells through the TGF-βRI/Smad2/3 signaling pathway. This novel insight into the role of M2Φ-exos in modulating EMT may have important implications for the beneficial effects of asthma, particularly in addressing airway remodeling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11987241 | PMC |
http://dx.doi.org/10.1186/s40001-025-02516-4 | DOI Listing |
Gen Physiol Biophys
September 2025
Pneumology Department, Zigong First People's Hospital, Zigong, China.
Chronic obstructive pulmonary disease (COPD) is characterized by airway remodeling and inflammation. Cigarette smoke extract (CSE) induces apoptosis, inflammation, and oxidative stress in COPD. Tripterygium glycosides (TG) are an active compound found in the root extracts of Tripterygium wilfordii Hook F (TWHF) that possesses anti-inflammatory and immunosuppressive effects.
View Article and Find Full Text PDFPLoS Pathog
September 2025
Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France.
Respiratory syncytial virus (RSV), the most common cause of bronchiolitis and pneumonia in infants, elicits a remarkably weak innate immune response. This is partly due to type I interferon (IFN) antagonism by the non-structural RSV NS1 protein. It was recently suggested that NS1 could modulate host transcription via an interaction with the MED25 subunit of the Mediator complex.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2025
Selcuk University, Faculty of Medicine, Department of Medical Biochemistry, Konya, Turkey. Electronic address:
This study investigates the cytotoxic and biochemical effects of PEGylated graphene oxide sol-gel (SJ-go) nanoparticles, curcumin, and quercetin on BEAS-2B human bronchial epithelial. In this work, a new graphene oxide nanocomposite (SJ-go) was produced using the sol-gel method through a one-step reaction. These hybrid sol-gel systems include graphite, triethyl orthosilicate (TEOS), and polyethylene glycol (PEG) having a molecular weight of 8000 g/mol.
View Article and Find Full Text PDFBr J Cancer
September 2025
State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Key Laboratory of Radiation Damage and Countermeasures of Jiangsu Provincial Universities and Col
Background: In recent years, there has been a steady increase in professionals engaged in radioactive work. The biological impacts of long-term exposure to low dose-rate radiation remain elusive, as there is a dearth of systematic research in this field.
Methods: BEAS-2B cells were used to establish a cell model with continuous passaging after radiation exposure, which was subsequently subjected to in vivo tumorigenesis assays and in vitro malignant phenotype experiments.
Int Immunopharmacol
September 2025
Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China. Electronic address:
Background: Chronic obstructive pulmonary disease (COPD), mainly caused by cigarette smoke (CS), is a global health concern. Ferroptosis is recognized as a key driver of COPD progression, yet its underlying mechanisms are unclear. This study aimed to identify crucial genes involved in COPD and elucidate their functional roles in COPD via bioinformatics and experiments.
View Article and Find Full Text PDF