Carbon-conserving bioproduction of malate in an E. coli-based cell-free system.

Metab Eng

Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, 98195, United States; Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, United States. Electronic address:

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Formate, a biologically accessible form of CO, has attracted interest as a renewable feedstock for bioproduction. However, approaches are needed to investigate efficient routes for biological formate assimilation due to its toxicity and limited utilization by microorganisms. Cell-free systems hold promise due to their potential for efficient use of carbon and energy sources and compatibility with diverse feedstocks. However, bioproduction using purified cell-free systems is limited by costly enzyme purification, whereas lysate-based systems must overcome loss of flux to background reactions in the cell extract. Here, we engineer an E. coli-based system for an eight-enzyme pathway from DNA and incorporate strategies to regenerate cofactors and minimize loss of flux through background reactions. We produce the industrial di-acid malate from glycine, bicarbonate, and formate by engineering the carbon-conserving reductive TCA and formate assimilation pathways. We show that in situ regeneration of NADH drives metabolic flux towards malate, improving titer by 15-fold. Background reactions can also be reduced 6-fold by diluting the lysate following expression and introducing chemical inhibitors of competing reactions. Together, these results establish a carbon-conserving, lysate-based cell-free platform for malate production, producing 64 μM malate after 8 h. This system conserves 43 % of carbon otherwise lost as CO through the TCA cycle and incorporates 0.13 mol CO equivalents/mol glycine fed. Finally, techno-economic analysis of cell-free malate production from formate revealed that the high cost of lysate is a key challenge to the economic feasibility of the process, even assuming efficient cofactor recycling. This work demonstrates the capabilities of cell-free expression systems for both the prototyping of carbon-conserving pathways and the sustainable bioproduction of platform chemicals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymben.2025.03.020DOI Listing

Publication Analysis

Top Keywords

background reactions
12
formate assimilation
8
cell-free systems
8
loss flux
8
flux background
8
malate production
8
malate
6
cell-free
6
formate
5
carbon-conserving
4

Similar Publications

Background: Ensuring adequate depth of i.v. anaesthesia by measuring propofol in breath gas could increase patient safety.

View Article and Find Full Text PDF

Research on worker exposure to volatile organic compounds (VOCs) during asphalt paving operations remains significantly limited, and regulatory frameworks governing such exposures are also insufficient. Previous studies have primarily focused on a limited number of major VOCs. However, this study employs high-resolution, high-performance Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) to comprehensively evaluate exposure levels to 25 different VOCs.

View Article and Find Full Text PDF

Forensic applications of compound genetic markers: trends and future directions.

Sci Justice

September 2025

School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Westville, Durban 4000, South Africa. Electronic address:

A compound marker integrates two or more genetic markers into a single assay. The application of compound markers enhances the predictive accuracy of genetic testing by leveraging the strengths of different genetic variations while mitigating the limitations of individual markers. Compound markers include SNP-SNPs, SNP-STRs, DIP-SNPs, DIP-STRs, Multi-In/Dels, CpG-SNPs, CpG-STRs/CpG-In/Del, and Methylation-Microhaplotypes.

View Article and Find Full Text PDF

Background: Influenza remains a major public health issue, leading to millions of severe cases and many deaths annually. Although educational and childcare institutions are key transmission points for the spread of the virus in communities, few studies have comprehensively examined the vaccination rates and their determinants in these settings.

Methods: We conducted a nationwide web-based survey to assess influenza knowledge, perceptions, and determinants of vaccine hesitancy based on the 5C model among childcare and educational professionals in Japan.

View Article and Find Full Text PDF

PUM2 Lowers HDAC9 mRNA Stability to Improve Contrast-Induced Acute Kidney Injury through Attenuating Oxidative Stress and Promoting Autophagy.

Diabetes Metab J

September 2025

Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, Changsha, China.

Background: Contrast-induced acute kidney injury (CIAKI) is the third cause of hospital-acquired acute kidney injury and diabetes mellitus (DM) was identified as a risk factor for CIAKI. However, the molecular mechanism underlying DM-CIAKI remains unclear, which needs further investigation.

Methods: DM-CIAKI models of mice and cells were established.

View Article and Find Full Text PDF