Publications by authors named "Ryan A L Cardiff"

CRISPR gene activation (CRISPRa) tools have shown great promise for bacterial strain engineering but often require customization for each intended application. Our goal is to create generalizable CRISPRa tools that can overcome previous limitations of gene activation in bacteria. In eukaryotic cells, multiple activators can be combined for synergistic gene activation.

View Article and Find Full Text PDF

Cell-free gene expression systems derived from bacterial lysates enable the expression of biosynthetic pathways from inexpensive and easily prepared DNA templates. These systems hold great promise for modular and on-demand bioproduction of valuable small molecules in resource-limited settings but are constrained in their long-term stability, reusability, and deployability. In this work, we demonstrate that multiple cell-free expressed enzymes can be co-immobilized in biocompatible hydrogels made from poly(ethylene glycol) diacrylate (PEGDA) with added glycerol for enhanced gel integrity.

View Article and Find Full Text PDF

Formate, a biologically accessible form of CO, has attracted interest as a renewable feedstock for bioproduction. However, approaches are needed to investigate efficient routes for biological formate assimilation due to its toxicity and limited utilization by microorganisms. Cell-free systems hold promise due to their potential for efficient use of carbon and energy sources and compatibility with diverse feedstocks.

View Article and Find Full Text PDF

Biological systems can directly upgrade carbon dioxide (CO) into chemicals. The CO fixation rate of autotrophic organisms, however, is too slow for industrial utility, and the breadth of engineered metabolic pathways for the synthesis of value-added chemicals is too limited. Biotechnology workhorse organisms with extensively engineered metabolic pathways have recently been engineered for CO fixation.

View Article and Find Full Text PDF

The CRISPR-Cas system has enabled the development of sophisticated, multigene metabolic engineering programs through the use of guide RNA-directed activation or repression of target genes. To optimize biosynthetic pathways in microbial systems, we need improved models to inform design and implementation of transcriptional programs. Recent progress has resulted in new modeling approaches for identifying gene targets and predicting the efficacy of guide RNA targeting.

View Article and Find Full Text PDF

Robust control over gene translation at arbitrary mRNA targets is an outstanding challenge in microbial synthetic biology. The development of tools that can regulate translation will greatly expand our ability to precisely control genes across the genome. In Escherichia coli, most genes are contained in multi-gene operons, which are subject to polar effects where targeting one gene for repression leads to silencing of other genes in the same operon.

View Article and Find Full Text PDF

In the past decades, the broad selection of CRISPR-Cas systems has revolutionized biotechnology by enabling multimodal genetic manipulation in diverse organisms. Rooted in a molecular engineering perspective, we recapitulate the different CRISPR components and how they can be designed for specific genetic engineering applications. We first introduce the repertoire of Cas proteins and tethered effectors used to program new biological functions through gene editing and gene regulation.

View Article and Find Full Text PDF

Dynamic, multi-input gene regulatory networks (GRNs) are ubiquitous in nature. Multilayer CRISPR-based genetic circuits hold great promise for building GRNs akin to those found in naturally occurring biological systems. We develop an approach for creating high-performing activatable promoters that can be assembled into deep, wide, and multi-input CRISPR-activation and -interference (CRISPRa/i) GRNs.

View Article and Find Full Text PDF

Background: Facebook has a comprehensive set of policies intended to inhibit promotion and sales of tobacco products. Their effectiveness has yet to be studied.

Methods: Leading tobacco brands (388) were identified via Nielsen and Ranker databases and 108 were found to maintain brand-sponsored Facebook pages.

View Article and Find Full Text PDF