Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microglial activation plays a pivotal role in the pathogenesis of retinal ganglion cell (RGC) degeneration resulting from optic nerve crush (ONC). Small extracellular vesicles (sEVs) secreted by mesenchymal stem cells (MSCs) have the potential to prevent retinal degeneration by modulating microglial activation. In this study, we elucidated the specific effects of sEVs derived from IFN-γ-primed MSCs on the phenotypic transition of microglia and the associated pathways in ONC mice. The ONC mice model was established and administered intravitreal injection with the sEVs derived from native MSCs (native sEVs) and the sEVs derived from MSCs primed with IFN-γ (IFNγ-sEVs). Their respective effects on the survival of the retinal ganglion cells (RGCs) and the transition of microglia phenotypes were determined through visual function testing and immunohistochemical staining. Combined with mRNA seq and microRNA seq techniques, we elucidated the mechanism of modulation of microglia phenotypic transformation by sEVs derived from MSCs primed by IFNγ. It demonstrated that IFNγ-sEVs exhibited superior protective effects against RGC loss and reduced inflammatory responses in the ONC retina compared to native sEVs. Both types of sEVs promoted microglia activation to disease-associated microglia (DAM) phenotype, while IFNγ-sEVs especially suppressed interferon-responsive microglia (IRM) activation during RGCs degeneration. Subsequent miRNA sequencing suggested that , which exhibited the most significant differential expression between the two sEVs types and elevated expression in IFNγ-sEVs, inhibited the expression of IRM and ribosomal genes. These findings suggest that IFN-γ-preconditioned MSCs may enhance sEVs of neuroprotection on RGCs by suppressing IRM activation through the secretion of sEVs containing specific microRNAs in ONC mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11977360PMC
http://dx.doi.org/10.20517/evcna.2024.66DOI Listing

Publication Analysis

Top Keywords

sevs derived
16
retinal ganglion
12
onc mice
12
sevs
11
ganglion cells
8
microglia activation
8
microglial activation
8
transition microglia
8
native sevs
8
derived mscs
8

Similar Publications

Objective: Vertical sleeve gastrectomy (VSG) promotes significant metabolic improvements, though the underlying molecular mechanisms are not fully understood. Emerging evidence suggests that small extracellular vesicles (sEVs) contribute to metabolic improvements post VSG, such as improved fatty liver disease or adipose tissue function; however, it is unclear how different organ-specific sEVs interact with various metabolic parameters. The objective of this study is to establish the role of organ-specific sEVs in the metabolic improvements post VSG.

View Article and Find Full Text PDF

Background: Sarcomas are rare cancer with a heterogeneous group of tumors. They affect both genders across all age groups and present significant heterogeneity, with more than 70 histological subtypes. Despite tailored treatments, the high metastatic potential of sarcomas remains a major factor in poor patient survival, as metastasis is often the leading cause of death.

View Article and Find Full Text PDF

Replication of HIV-1 requires the coordinated action of host and viral transcription factors, most critically the viral transactivator Tat and the host nuclear factor κB (NF-κB). This activity is disrupted in infected cells that are cultured with extracellular vesicles (EVs) present in human semen, suggesting that they contain factors that could inform the development of new therapeutics. Here, we explored the contents of semen-derived EVs (SEVs) from uninfected donors and individuals with HIV-1 and identified host proteins that interacted with HIV Tat and the NF-κB subunit p65.

View Article and Find Full Text PDF

Small extracellular vesicles orchestrated pathological communications between breast cancer cells and cardiomyocytes as a novel mechanism exacerbating anthracycline cardiotoxicity by fueling ferroptosis.

Redox Biol

September 2025

National Clinical Research Center for Geriatric Diseases, The Second Medical Center, Chinese PLA General Hospital, 100853, Beijing, China; Institute of Geriatric Medicine, The Second Medical Center, Chinese PLA General Hospital, 100853, Beijing, China.

Small extracellular vesicles (sEVs) critically orchestrate inter-tissue and inter-organ communications and may play essential roles in heart-tumor interaction. However, whether cancer-secreted sEVs affect the progression of doxorubicin-induced cardiotoxicity (DOXIC) via orchestrating the tumor cell-cardiomyocyte crosstalk has not yet been explored. Herein, we reveal that Doxorubicin (DOX)-treated breast cancer cells secrete sEVs (D-BCC-sEVs) that exacerbate DOX-induced ferroptosis of human iPSC-derived cardiomyocytes (hiCMs).

View Article and Find Full Text PDF

Regulated release of small extracellular vesicles directs neutrophil recruitment in cutaneous wound healing.

J Invest Dermatol

September 2025

Department of Surgery, University of California San Diego, La Jolla, CA, United States; Department of Dermatology, University of California San Diego, La Jolla, CA, United States. Electronic address:

Normal cutaneous wound healing is a multicellular process that involves the release of small extracellular vesicles (sEVs) that coordinate intercellular communication by delivery of sEV payloads to recipient cells. We have recently shown how the pro-reparative activity of inflammatory cell sEVs, especially macrophage and neutrophil-derived sEVs, in the wound bed is dysregulated in impaired wound healing. Here we show that loss of Rab27A, a small GTPase that has a regulatory function in sEV secretion, reduces the release of neutrophil and macrophage-derived sEVs.

View Article and Find Full Text PDF