Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Objective: Radiomics extracts quantitative features from magnetic resonance images (MRI) and is especially useful in the presence of subtle pathological changes within human soft tissues. This scenario, however, may not cover the effects of intrinsic, e.g., aging-related, (physiological) neurodegeneration of normal brain tissue. The aim of the work was to study the repeatability of radiomic features extracted from an apparently normal area in longitudinally acquired T1-weighted MR brain images using three different intensity normalization approaches typically used in radiomics: Z-score, WhiteStripe and Nyul.

Methods: Fifty-nine images of hearing impaired, yet cognitively intact, patients were repeatedly acquired in two different time points within six months. Ninety-one radiomic features were obtained from an area within the pons region, considered to be a healthy brain tissue according to previous analyses and reports. The Intraclass Correlation Coefficient (ICC) and the Concordance Correlation Coefficient (CCC) in the repeatability study were used as metrics.

Results: Features extracted from the MRI normalized with Z-score showed results comparable in both ICC (0.90 (0.82-0.98)) and CCC (0.82 (0.69-0.95)) distribution values, in terms of median and quartiles, with those extracted from the images normalized with WhiteStripe (0.89 (0.84-0.92)) and (0.80 (0.73-0.84)), respectively.

Conclusion: Our findings underline the importance of, providing useful guidelines for, the intensity normalization of brain MRI prior to a longitudinal radiomic analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2025.108738DOI Listing

Publication Analysis

Top Keywords

radiomic features
12
intensity normalization
12
repeatability radiomic
8
brain tissue
8
features extracted
8
correlation coefficient
8
features
5
brain
5
features brain
4
brain t1-w
4

Similar Publications

Rationale And Objectives: Double expression lymphoma (DEL) is an independent high-risk prognostic factor for primary CNS lymphoma (PCNSL), and its diagnosis currently relies on invasive methods. This study first integrates radiomics and habitat radiomics features to enhance preoperative DEL status prediction models via intratumoral heterogeneity analysis.

Materials And Methods: Clinical, pathological, and MRI imaging data of 139 PCNSL patients from two independent centers were collected.

View Article and Find Full Text PDF

Radiomics nomogram from multiparametric magnetic resonance imaging for preoperative prediction of substantial lymphovascular space invasion in endometrial cancer.

Abdom Radiol (NY)

September 2025

Department of Radiology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China.

Background: We aimed to develop and validate a radiomics-based machine learning nomogram using multiparametric magnetic resonance imaging to preoperatively predict substantial lymphovascular space invasion in patients with endometrial cancer.

Methods: This retrospective dual-center study included patients with histologically confirmed endometrial cancer who underwent preoperative magnetic resonance imaging (MRI). The patients were divided into training and test sets.

View Article and Find Full Text PDF

Objectives: In non-small cell lung cancer (NSCLC), non-invasive alternatives to biopsy-dependent driver mutation analysis are needed. We reviewed the effectiveness of radiomics alone or with clinical data and assessed the performance of artificial intelligence (AI) models in predicting oncogene mutation status.

Materials And Methods: A PRISMA-compliant literature review for studies predicting oncogene mutation status in NSCLC patients using radiomics was conducted by a multidisciplinary team.

View Article and Find Full Text PDF

Purpose: To predict metastasis-free survival (MFS) for patients with prostate adenocarcinoma (PCa) treated with androgen deprivation therapy (ADT) and external radiotherapy using clinical factors and radiomics extracted from primary tumor and node volumes in pre-treatment PSMA PET/CT scans.

Materials/methods: Our cohort includes 134 PCa patients (nodal involvement in 28 patients). Gross tumor volumes of primary tumor (GTVp) and nodes (GTVn) on CT and PET scans were segmented.

View Article and Find Full Text PDF

Dosiomics-guided deep learning for radiation esophagitis prediction in lung cancer: optimal region of interest definition via multi-branch fusion auxiliary learning.

Radiother Oncol

September 2025

Department of Radiotherapy Center, 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325000, China. Electronic address:

Background: Accurate delineation of regions of interest (ROIs) is critical for feature extraction and selection in radiomics-based prediction models.

Purpose: To develop a combined dosiomics and deep learning (DL) model for predicting grade ≥ 2 radiation esophagitis (RE) in lung cancer patients undergoing radiotherapy, we propose a multi-task auxiliary learning approach to define accurate and objective ROIs based on radiation dose distribution (RDD) images.

Materials And Methods: Lung cancer patients who underwent radiotherapy were gathered retrospectively from hospital 1 (January 2020 and December 2022) for model development.

View Article and Find Full Text PDF