98%
921
2 minutes
20
Emerging and re-emerging plant diseases continue to present multifarious threats to global food security. Considerable recent efforts are therefore being channeled towards understanding the nature of pathogen emergence, their spread and evolution. Xanthomonas euvesicatoria pv. perforans (Xep), one of the causal agents of bacterial spot of tomato, rapidly emerged and displaced other bacterial spot xanthomonads in many tomato production regions around the world. In less than three decades, it has become a dominant xanthomonad pathogen in tomato production systems across the world and presents a compelling example for understanding diversification of recently emerged bacterial plant pathogens. Although Xep has been continuously monitored in Florida since its discovery, the global population structure and evolution at the genome-scale is yet to be fully explored. The objectives of this work were to determine genetic diversity globally to ascertain if different tomato production regions contain genetically distinct Xep populations, to examine genetic relatedness of strains collected in tomato seed production areas in East Asia and other production regions, and to evaluate variation in type III secretion effectors, which are critical pathogenicity and virulence factors, in relationship to population structure. We used genome data from 270 strains from 13 countries for phylogenetic analysis and characterization of type III effector gene diversity among strains. Our results showed notable genetic diversity in the pathogen. We found genetically similar strains in distant tomato production regions, including seed production regions, and diversification over the past 100 years, which is consistent with intercontinental dissemination of the pathogen in hybrid tomato production chains. Evolution of the Xep pangenome, including the acquisition and loss of type III secreted effectors, is apparent within and among phylogenetic lineages. The apparent long-distance movement of the pathogen, together with variants that may not yet be widely distributed, poses risks of emergence of new variants in tomato production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12047805 | PMC |
http://dx.doi.org/10.1371/journal.ppat.1013036 | DOI Listing |
Arch Microbiol
September 2025
College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
Klebsiella oxytoca is a N-fixing bacterium whose nif (nitrogen fixation) gene expression is controlled by the two antagonistic regulatory proteins NifA and NifL encoded by the nifLA operon. NifA is a transcriptional activator, while NifL inhibits the transcriptional activity of NifA. In order to develop an improved K.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt.
The utilization of arbuscular mycorrhizal fungi (AMF) and spp. correlates with improved plant nutrition and the stimulation of systemic plant defenses in response to pathogen challenges. Nonetheless, studies examining the effects of AMF colonization and the foliar application of the isolate Tvd44 on viral infection are limited.
View Article and Find Full Text PDFFood Sci Biotechnol
October 2025
Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China.
The current work aimed to investigate the effects of fermentation of , , and on the physicochemical, electronic sensory evaluation, and flavour characteristics of heat-sterilized tomato juice (HTJ). The results indicated that LAB fermentation significantly decreased the pH, sucrose, and glucose, and lactic acid was increased. E-nose and tongue analyses revealed that the response to organic sulfides, terpenoids, and sourness increased after LAB fermentation HS-SPME-GC-MS and OAV revealed that heat-sterilization resulted a significant loss of aroma compounds (38.
View Article and Find Full Text PDFPhysiol Plant
September 2025
Centre of Molecular and Environmental Biology (CBMA), Department of Biology, School of Sciences of the University of Minho, Braga, Portugal.
The Mediterranean Basin, a hotspot for tomato production, is one of the most vulnerable areas to climate change, where rising temperatures and increasing soil and water salinization represent major threats to agricultural sustainability. Thus, to understand the molecular mechanisms behind plant responses to this stress combination, an RNA-Seq analysis was conducted on roots and shoots of tomato plants exposed to salt (100 mM NaCl) and/or heat (42°C, 4 h each day) stress for 21 days. The analysis identified over 8000 differentially expressed genes (DEGs) under combined stress conditions, with 1716 DEGs in roots and 2665 in shoots being exclusively modulated in response to this specific stress condition.
View Article and Find Full Text PDFAnal Methods
September 2025
Henan Linker Technology Key Laboratory, College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou 450001, China.
Salicylic acid (SA) is a critical phytohormone involved in plant growth, development, and defense responses, making its precise quantification essential for both agricultural management and environmental monitoring. Here, we report a novel label-free near-infrared aptasensor (NIRApt) for the rapid and sensitive detection of SA, utilizing a rationally selected triphenylmethane (TPM) dye. Through systematic screening, ethyl violet (EV) was identified as the optimal fluorophore, showing pronounced fluorescence enhancement upon binding to a SA-specific aptamer.
View Article and Find Full Text PDF