Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The design of single-atom catalysts with dual functions has emerged as a promising strategy for developing high-performance sensing platforms. Herein, we reported a facile host-guest strategy for synthesizing an atomically dispersed Co catalyst (Co-N-C), where Co atoms were uniformly anchored on the N-doped carbon matrix derived from zeolitic imidazolate framework-8. The as-prepared Co-N-C exhibits both excellent electrochemical sensing and peroxidase-like colorimetric activities toward the detection of three important bioactive small molecules, ascorbic acid (AA), dopamine (DA), and uric acid (UA). The electrochemical sensor demonstrated ultrahigh sensitivity with detection limits of 4.83, 1.36, and 0.371 μM for AA, DA, and UA, respectively, along with outstanding selectivity against common interferents and stable performance. Meanwhile, the colorimetric method also showed analytical performance with detection limits of 2.24 μM (AA), 3.09 μM (DA), and 2.97 μM (UA). The results indicate that the electronic modulation of Co through precise nitrogen coordination enhances the affinity of Co-N for target reactants, thereby promoting adsorption and electron transfer throughout the reaction. This improves catalytic efficiency and selectivity, establishing Co-N-C with dual-catalytic functionality as a promising material for biosensing applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.5c01216DOI Listing

Publication Analysis

Top Keywords

bioactive small
8
small molecules
8
detection limits
8
dual-mode sensor
4
sensor based
4
based single-atom
4
single-atom cobalt
4
cobalt catalyst
4
catalyst simultaneous
4
simultaneous electrochemical
4

Similar Publications

Background: Bacillus thuringiensis Cry toxins are well known for their insecticidal properties, primarily through the formation of ion-leakage pores via α4-α5 hairpins. His178 in helix 4 of the Cry4Aa mosquito-active toxin has been suggested to play a crucial role in its biotoxicity.

Objective: This study aimed to investigate the functional importance of Cry4Aa-His178 through experimental and computational analyses.

View Article and Find Full Text PDF

In vivo self-assembled siRNAs ameliorate neurological pathology in TDP-43-associated neurodegenerative disease.

Brain

September 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Provincial Key Laboratory of Non-human Primate Research, Guangdong-Hong Kong-Macau Institute of CNS Rege

Abnormal accumulation of TAR DNA-binding protein-43 (TDP-43) is a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Small interfering RNAs (siRNAs) targeting TDP-43 offer potential therapeutic strategies for these diseases. However, efficient and safe delivery of siRNAs to the central nervous system (CNS) remains a critical challenge.

View Article and Find Full Text PDF

HDAC inhibitors, which have been proven to be effective for some cancers, have potential as treatments for Non-small cell lung cancer (NSCLC). Building on the core structure of the highly selective HDAC6 inhibitor J22352, we modified various zinc-binding groups of this inhibitor. The resulting compounds 1-8 were designed and synthesized to explore potential derivatives and assess their effects on NSCLC bioactivity.

View Article and Find Full Text PDF

The Fabaceae-specific review highlights the structural, functional, and phylogenetic diversity of UGTs, revealing clade-specific glycosylation mechanisms and novel sugar conjugations that contribute to legume adaptability. These insights offer promising avenues for metabolic engineering and stress-resilient crop development. UDP-glycosyltransferases (UGTs) are the biocatalysts modifying small molecules through glycosylation to enhance their solubility, stability, and bioactivity.

View Article and Find Full Text PDF

Konjac glucomannan (KGM) is a natural polysaccharide polymer. It is degraded by gut microbiota-derived β-mannanase into small-molecule nutrients, which exert diverse physiological regulatory effects. As a prebiotic, KGM modulates gut microbiota composition.

View Article and Find Full Text PDF