98%
921
2 minutes
20
In recent years, with the rapid development of fields such as portable electronic devices, electric vehicles, and energy storage systems, the performance requirements for lithium-ion batteries have been continuously rising. Among the numerous key components of lithium-ion batteries, the performance of the anode materials plays a crucial role, as it is directly related to core indicators such as the energy density, cycle life, and safety of the batteries. Among them, silicon-based anode materials have stood out among many anode materials by virtue of their extremely high theoretical specific capacity, becoming one of the hot research directions in the field of lithium-ion battery anode materials at present. However, silicon-based anode materials have problems such as severe volume expansion, poor electrical conductivity, low initial coulombic efficiency, and unstable solid electrolyte interphase during the charging and discharging process, which limit their wide application and urgently require the seeking of new solutions. This paper comprehensively and in-depth introduces the research progress of silicon-based anode materials for lithium-ion batteries in recent years, focusing on the failure mechanisms and modification methods of silicon-based anodes, and provides effective solutions to the severe challenges faced in the commercialization process of silicon-based anodes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11973552 | PMC |
http://dx.doi.org/10.1039/d5ra01268f | DOI Listing |
Chem Commun (Camb)
September 2025
Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China.
Hard carbon (HC) has emerged as a promising anode material for sodium-ion batteries (SIBs) owing to its low cost, abundant renewable resources, and high specific capacity. However, its practical application is significantly hindered by the severe initial irreversible capacity loss resulting from sodium consumption during the first cycle. To address this issue, a variety of presodiation strategies have been developed to compensate for the sodium loss and improve the initial coulombic efficiency.
View Article and Find Full Text PDFACS Electrochem
September 2025
Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, Gothenburg 412 96, Sweden.
Carbon fiber nanotip electrodes (CFNEs) are crucial for electrochemical recordings of neurotransmission release in confined spaces, such as synapses and intracellular measurements. However, fabricating CFNEs with small surface area to minimize noise remains challenging due to inconsistent tip size control, low reproducibility, and low fabrication success rate. Here, we present a reliable, user-friendly method with high reproducibility and success rate for precise CFNE fabrication using microscopy-guided electrochemical etching of cylindrical carbon fiber microelectrodes in a potassium hydroxide droplet.
View Article and Find Full Text PDFACS Electrochem
September 2025
Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom.
The surface structure of an electrocatalyst plays a crucial role in determining the activity. As a model system, gold has been widely investigated as an electro-oxidation catalyst, although there has been much less research on the oxygen evolution reaction (OER) in the potential region of gold oxidation. Here, we combine voltammetric scanning electrochemical cell microscopy (SECCM) and electron backscatter diffraction (EBSD), at different spatial and angular resolutions, respectively, to correlate the local crystallographic structure of polycrystalline goldfocusing on grains close to (113), (011), (114), and (111) orientationswith the electrocatalytic behavior for the OER.
View Article and Find Full Text PDFBeilstein J Nanotechnol
August 2025
Department of Physics & Engineering Physics, Morgan State University, Baltimore, MD 21251, USA.
Nanoscale biosensors have gained attention in recent years due to their unique characteristics and size. Manufacturing steps, cost, and other shortcomings limit the widespread use and commercialization of nanoscale electrodes. In this work, a nano-size electrode fabricated by directed electrochemical nanowire assembly and parylene-C insulation is introduced.
View Article and Find Full Text PDFNanoscale Horiz
September 2025
Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA.
Nanostructuring, which shortens lithium-ion diffusion lengths, can help facilitate pseudocapacitive behavior in some battery materials. Here, nanostructured LiNiCoAlO (NCA), with porosity and decreased crystallite size compared to commercial bulk NCA, was synthesized using a colloidal polymer template. Small particles (∼150 nm) were obtained using rapid thermal annealing (RTA), while medium particles (∼300 nm) were obtained with conventional heating.
View Article and Find Full Text PDF