Optimizing Transcribed CRISPR-Cas9 Single-Guide RNA Libraries for Improved Uniformity and Affordability.

bioRxiv

Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Blvd., Eugene, OR 97403, USA.

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We describe a scalable and cost-effective sgRNA synthesis workflow that reduces costs by over 70% through the use of large pools of microarray-derived oligos encoding unique sgRNA spacers. These subpool oligos are assembled into full-length dsDNA templates via Golden Gate Assembly before transcription with T7 RNA polymerase. RNA-seq analysis reveals severe biases in spacer representation, with some spacers being highly overrepresented while others are completely absent. Consistent with previous studies, we identify guanine-rich sequences within the first four nucleotides of the spacer, immediately downstream of the T7 promoter, as the primary driver of this bias. To address this issue, we introduced a guanine tetramer upstream of all spacers, which reduced bias by an average of 19% in sgRNA libraries containing 389 spacers. However, this modification also increased the presence of high-molecular-weight RNA species after transcription. We also tested two alternative bias-reduction strategies: compartmentalizing spacers within emulsions and optimizing DNA input and reaction volumes. Both methods independently reduced bias in 2,626-plex sgRNA libraries, though to a lesser extent than the guanine tetramer approach. These advancements enhance both the affordability and uniformity of sgRNA libraries, with broad implications for improving CRISPR-Cas9 screens and optimizing guide RNA design for other CRISPR and nuclease systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974757PMC
http://dx.doi.org/10.1101/2025.03.24.644170DOI Listing

Publication Analysis

Top Keywords

sgrna libraries
12
guanine tetramer
8
reduced bias
8
sgrna
5
spacers
5
optimizing transcribed
4
transcribed crispr-cas9
4
crispr-cas9 single-guide
4
rna
4
single-guide rna
4

Similar Publications

Small cell lung cancer (SCLC) is an aggressive malignancy, with most patients presenting with prognostically poor extensive-stage disease. Limited progress in standard care stresses the urgent need for novel therapies. Radiotherapy offers some survival benefit for selected SCLC patients but could be enhanced with radiosensitizers.

View Article and Find Full Text PDF

The CRISPR/Cas9 genome editing system has emerged as an effective platform to generate loss-of-function gene edits through non-homologous end joining (NHEJ) without a repair template. To verify whether small molecules can enhance the efficiency of CRISPR/ Cas9-mediated NHEJ gene editing in porcine cells, this experiment investigated the effects of six small-molecule compounds, namely Repsox, Zidovudine, IOX1, GSK-J4, YU238259, and GW843682X, on the efficiency of CRISPR/Cas9-mediated NHEJ gene editing. The results showed the optimal concentrations of the small molecules, including Repsox, Zidovudine, IOX1, GSK-J4, YU238259, and GW843682X, for in vitro-cultured PK15 viability.

View Article and Find Full Text PDF

Understanding genetic dependencies in cancer is key to identifying novel actionable drug targets to advance precision medicine. Whole-genome CRISPR-knockout library screening methods have facilitated this goal. Pooled libraries of single guide RNAs (sgRNAs) targeting over 90% of the annotated protein coding genome are used to induce gene knockouts in pre-clinical cancer models.

View Article and Find Full Text PDF

There is a substantial need for scalable CRISPR-based genetic screening methods that can be applied in mammalian tissues in vivo while enabling cell-type-specific analysis. Here we developed an adeno-associated virus (AAV)-based CRISPR screening platform, CrAAVe-seq, that incorporates a Cre-sensitive sgRNA construct for pooled screening within targeted cell populations in mouse tissues. We used this approach to screen two large sgRNA libraries, which collectively target over 5,000 genes, in mouse brains and uncovered genes essential for neuronal survival, of which we validated Rabggta and Hspa5.

View Article and Find Full Text PDF

Kingdom-wide CRISPR guide design with ALLEGRO.

Nucleic Acids Res

August 2025

Chemical and Environmental Engineering, University of California, Riverside, CA 92521, United States.

Designing CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) single guide RNA (sgRNA) libraries targeting entire kingdoms of life will significantly advance genetic research in diverse and underexplored taxa. Current sgRNA design tools are often species-specific and fail to scale to large, phylogenetically diverse datasets, limiting their applicability to comparative genomics, evolutionary studies, and biotechnology. Here, we introduce ALLEGRO, a combinatorial optimization algorithm designed to compose minimal, yet highly effective sgRNA libraries targeting thousands of species at the same time.

View Article and Find Full Text PDF