98%
921
2 minutes
20
Attention-deficit/hyperactivity disorder (ADHD) is characterized by considerable clinical heterogeneity. This study investigates whether normative modelling of topological properties derived from brain morphometry similarity networks can provide robust stratification markers for ADHD children. Leveraging multisite neurodevelopmental datasets (discovery: 446 ADHD, 708 controls; validation: 554 ADHD, 123 controls), we constructed morphometric similarity networks and developed normative models for three topological metrics: degree centrality, nodal efficiency, and participation coefficient. Through semi-supervised clustering, we delineated putative biotypes and examined their clinical profiles. We further contextualized brain profiles of these biotypes in terms of their neurochemical and functional correlates using large-scale databases, and assessed model generalizability in an independent cohort. ADHD exhibited atypical hub organization across all three topological metrics, with significant case-control differences primarily localized to a covarying multi-metric component in the orbitofrontal cortex. Three biotypes emerged: one characterized by severe overall symptoms and longitudinally persistent emotional dysregulation, accompanied by pronounced topological alterations in the medial prefrontal cortex and pallidum; a second by predominant hyperactivity/impulsivity accompanied by changes in the anterior cingulate cortex and pallidum; and a third by marked inattention with alterations in the superior frontal gyrus. These neural profiles of each biotype showed distinct neurochemical and functional correlates. Critically, the core findings were replicated in an independent validation cohort. Our comprehensive approach reveals three distinct ADHD biotypes with unique clinical-neural patterns, advancing our understanding of ADHD's neurobiological heterogeneity and laying the groundwork for personalized treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974972 | PMC |
http://dx.doi.org/10.1101/2025.03.27.25324802 | DOI Listing |
J Ind Microbiol Biotechnol
September 2025
Department of Biochemistry University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Glycocins are a growing family of ribosomally synthesized and posttranslationally modified peptides (RiPPs) that are O- and/or S-glycosylated. Using a sequence similarity network of putative glycosyltransferases, the thg biosynthetic gene cluster was identified in the genome of Thermoanaerobacterium thermosaccharolyticum. Heterologous expression in Escherichia coli showed that the glycosyltransferase (ThgS) encoded in the biosynthetic gene cluster (BGC) adds N-acetyl-glucosamine (GlcNAc) to Ser and Cys residues of ThgA.
View Article and Find Full Text PDFJ Thorac Oncol
August 2025
Department of Radiation Medicine, Markey Cancer Center, University of Kentucky, Lexington, Kentucky.
Introduction: Cigarette smoking negatively affects lung cancer prognosis. Incorporating smoking history into stage-stratified survival analyses may improve prognostication.
Methods: Using the International Association for the Study of Lung Cancer ninth edition NSCLC database, we evaluated the association between smoking status at diagnosis and overall survival (OS) using Kaplan-Meier plots and multivariate Cox proportional hazard regression models adjusted for age, region, sex, histologic type, performance status, and TNM stage.
Cochrane Database Syst Rev
September 2025
Division of Gastroenterology, Hepatology, and Nutrition, SickKids Research Institute and SickKids Learning Institute, The Hospital for Sick Children, Toronto, Ontario, Canada.
Background: Training in endoscopy has traditionally been based upon an apprenticeship model, where novices develop their skills on real patients under the supervision of experienced endoscopists. In an effort to prioritise patient safety, simulation training has emerged as a means to allow novices to practice in a risk-free environment. This is the second update of the review, which was first published in 2012 and updated in 2018.
View Article and Find Full Text PDFJ Biomed Opt
December 2025
University of Toronto, Department of Medical Biophysics, Temerty Faculty of Medicine, Toronto, Ontario, Canada.
Significance: Tumor tissues exhibit contrast with healthy tissue in circular degree of polarization (DOP) images via higher magnitude circular DOP values and increased helicity-flipping. This phenomenon may enable polarimetric tumor detection and surgical/procedural guidance applications.
Aim: Depolarization metrics have been shown to exhibit differential responses to healthy and cancer tissue, whereby tumor tissues tend to induce less depolarization; however, the understanding of this depolarization-based contrast remains limited.
Biol Methods Protoc
September 2025
School of Information and Communications Technology, Hanoi University of Science and Technology, Hanoi 100000, Vietnam.
MicroRNAs (miRNAs) play a critical role in disease mechanisms, making the identification of disease-associated miRNAs essential for precision medicine. We propose a novel computational method, multiplex-heterogeneous network for MiRNA-disease associations (MHMDA), which integrates multiple miRNA functional similarity networks and a disease similarity network into a multiplex-heterogeneous network. This approach employs a tailored random walk with restart algorithm to predict disease-miRNA associations, leveraging the complementary information from experimentally validated and predicted miRNA-target interactions, as well as disease phenotypic similarities.
View Article and Find Full Text PDF