Decatungstate-Driven Photocatalytic Pathways for Sustainable and Cleaner Recovery of Precious Metals.

Angew Chem Int Ed Engl

MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, P.R. China.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The recovery of precious metals from waste streams is crucial for sustainable resource utilization but remains hindered by traditional methods involving high toxicity, energy consumption, and environmental pollution. Here, we present a photocatalytic strategy employing hydrothermally synthesized decatungstate ([WO]) homogeneous ion catalysts to achieve simultaneous oxidation and reduction of precious metals under ambient conditions. This innovative approach integrates solvent-controlled reaction pathways, enabling efficient dissolution and recovery of precious metals from diverse waste sources, including electronic waste (e-waste), platinum membrane electrodes, and platinum-containing catalysts. The decatungstate catalyst exhibits exceptional performance, with an apparent quantum yield of 0.027%-nearly double that of commercial TiO (0.014%)-and achieves recovery efficiency of 80%-100% for platinum, surpassing 21 tested photocatalysts. The process adheres to a solid-phase dissolution model and remains against ionic interference. Time-dependent density functional theory (TD-DFT) calculations corroborate experimental UV-vis spectra, while electron-hole pair analyses elucidate atomic and molecular contributions to photocatalytic activity. Density functional theory (DFT) further validates the thermodynamic feasibility of the reaction pathways. By combining high efficiency, ambient operational conditions, and scalability, this work establishes decatungstates as a sustainable benchmark for green precious metal recovery, addressing the limitations of traditional methods and advancing innovation in resource circularity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202505651DOI Listing

Publication Analysis

Top Keywords

precious metals
16
recovery precious
12
traditional methods
8
reaction pathways
8
density functional
8
functional theory
8
recovery
5
precious
5
decatungstate-driven photocatalytic
4
photocatalytic pathways
4

Similar Publications

A theoretical study on doping Pd-like superatoms into defective graphene quantum dots: an efficient strategy to design single superatom catalysts for the Suzuki reaction.

Nanoscale

September 2025

Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, People's Republic of China.

The rational design of non-precious metal catalysts as a replacement for Pd is of great importance for catalyzing various important chemical reactions. To realize this purpose, the palladium-like superatom NbN was doped into a defective graphene quantum dot (GQD) model with a double-vacancy site to design a novel single superatom catalyst, namely, NbN@GQD, based on density functional theory (DFT), and its catalytic activity for the Suzuki reaction was theoretically investigated. Our results reveal that this designed catalyst exhibits satisfactory activity with a small rate-limiting energy barrier of 25.

View Article and Find Full Text PDF

Solvothermal synthesis of PtPb nanoparticles with efficient alcohol oxidation performance.

Nanoscale

September 2025

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.

Precious metal nanomaterials have demonstrated significant advantages in the field of alcohol electro-catalytic oxidation. In this study, the inexpensive main group metals lead (Pb) and platinum (Pt) have been innovatively selected to construct an alloy catalyst. By employing the solvent-thermal method, PtPb nanoparticles with a well-defined crystalline structure were successfully synthesized, exhibiting excellent performance.

View Article and Find Full Text PDF

LMCT-Driven Iron Photocatalysis: Mechanistic Insights and Synthetic Applications.

Chemistry

September 2025

Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany.

Iron-based photocatalysis has emerged as a sustainable and versatile platform for facilitating a wide range of chemical transformations, offering an appealing alternative to precious metal photocatalysts. Among the various activation modes, ligand-to-metal charge transfer (LMCT)-driven homolysis of Fe(III)-L(ligand) bonds has garnered considerable attention due to its ability to generate reactive radical species under mild conditions, without requiring the matching of substrates' redox potentials. In this review, we present a comprehensive overview of recent developments in LMCT-driven iron photocatalysis, with a particular focus on both mechanistic insights and synthetic applications published in the last five years.

View Article and Find Full Text PDF

Carbon-hydrogen bond activation is a pillar of synthetic chemistry. While it is generally accepted that Pd is more facile than Ni in C-H activation catalysis, there are no experimental platforms available to directly compare the magnitude of C-H bond weakening between Ni and Pd prior to bond scission. This work presents the first direct measurements of C(sp)-H bond acidity (p) and bond dissociation free energy (BDFE) for a species containing a ligated alkane-palladium interaction (RCH···Pd), also known as an agostic interaction.

View Article and Find Full Text PDF

Water electrolysis for hydrogen production has become an industrial focus in the era of green chemistry due to its high purity of hydrogen production and environmentally friendly, efficient process. As the half reaction of water splitting at the anode, the oxygen evolution reaction (OER) features a complex and sluggish process that restricts the efficiency of water splitting. The mechanism of OER varies with different electrolytes.

View Article and Find Full Text PDF