Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A potent class of HIV-1 broadly neutralizing antibodies (bnAbs) targets the envelope glycoprotein's membrane proximal exposed region (MPER) through a proposed mechanism where hypervariable loops embed into lipid bilayers and engage headgroup moieties alongside the epitope. We address the feasibility and determinant molecular features of this mechanism using multi-scale modeling. All-atom simulations of 4E10, PGZL1, 10E8, and LN01 docked onto HIV-like membranes consistently form phospholipid complexes at key complementarity-determining region loop sites, solidifying that stable and specific lipid interactions anchor bnAbs to membrane surfaces. Ancillary protein-lipid contacts reveal surprising contributions from antibody framework regions. Coarse-grained simulations effectively capture antibodies embedding into membranes. Simulations estimating protein-membrane interaction strength for PGZL1 variants along an inferred maturation pathway show bilayer affinity is evolved and correlates with neutralization potency. The modeling demonstrated here uncovers insights into lipid participation in antibodies' recognition of membrane proteins and highlights antibody features to prioritize in vaccine design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11975376PMC
http://dx.doi.org/10.7554/eLife.90139DOI Listing

Publication Analysis

Top Keywords

phospholipid complexes
8
initio prediction
4
prediction specific
4
specific phospholipid
4
membrane
4
complexes membrane
4
membrane association
4
association hiv-1
4
hiv-1 mper
4
mper antibodies
4

Similar Publications

In this study, both pure and calcium-containing complex liposomes made from DPPC phospholipids were investigated using calorimetric and spectrophotometric methods. Liposomes were prepared using a new technology in both water and a 20% glycerol aqueous solution. Glycerol allows drug-containing DPPC liposomes to penetrate the dermis of the skin through the epidermis.

View Article and Find Full Text PDF

The Role of Phospholipids in Mitochondrial Dynamics and Associated Diseases.

Front Biosci (Landmark Ed)

August 2025

University of Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, 49330 Angers, France.

The bioenergetic machinery of the cell is protected and structured within two layers of mitochondrial membranes. The mitochondrial inner membrane is extremely rich in proteins, including respiratory chain complexes, substrate transport proteins, ion exchangers, and structural fusion proteins. These proteins participate directly or indirectly in shaping the membrane's curvature and facilitating its folding, as well as promoting the formation of nanotubes, and proton-rich pockets known as cristae.

View Article and Find Full Text PDF

Leveraging information entropy to quantitatively measure the organizational diversity and complexity of different chemical systems is a compelling need for next-generation supramolecular and systems chemistry. It can also be a strategy for digitalizing and enabling the bottom-up development of life-like complex systems following probable origin-of-life scenarios. According to the lipid world hypothesis, lipid molecules appear first to facilitate compartmentalization, catalysis, information processing, It is envisaged that fatty acid-based vesicles are more primitive than phospholipid vesicles.

View Article and Find Full Text PDF

Cardiolipin (CL) is the signature phospholipid of the inner mitochondrial membrane, where it stabilizes electron transport chain protein complexes. The final step in CL biosynthesis relates to its remodelling: the exchange of nascent acyl chains with longer, unsaturated chains. However, the enzyme responsible for cleaving nascent CL (nCL) has remained elusive.

View Article and Find Full Text PDF

Alpha-Synuclein (αSyn), a hallmark protein of synucleinopathies such as Parkinson's disease, is likely to be involved in neuronal membrane trafficking and synaptic vesicle dynamics at axon terminals. Its specific binding to anionic phospholipids, such as phosphatidylinositol phosphates (PIPs) that are essential for intracellular signaling and membrane trafficking, suggests an involvement in vesicular transport processes. In Saccharomyces cerevisiae, a model organism for cell biological PD research, human αSyn localises to the plasma membrane via the secretory machinery.

View Article and Find Full Text PDF