The behavior of NOM-Cu(Ⅱ)colloids at the goethite interface.

Water Res

School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China. Electronic address: clguo@scut

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Natural organic matter (NOM), due to its high reactivity, often facilitates the formation of NOM-heavy metal colloids. However, the impact of mineral components on the behavior of these colloids remains poorly understood. In present research, to investigate the interfacial reaction properties of NOM-Cu(II) colloids with goethite at varying C/Cu(II) ratios, nano-sized Cu(Ⅱ) colloids with different C/Cu(Ⅱ) ratios were synthesized under aerobic conditions by combining humic acid with Cu(Ⅱ). Adsorption experiments showed that NOM-Cu(Ⅱ) colloids enhanced Cu(Ⅱ) adsorption onto goethite at low C/Cu(Ⅱ) ratios (C/Cu(Ⅱ) ≤ 25). Conversely, the adsorption of Cu(Ⅱ) was hindered at high C/Cu(Ⅱ) ratios (C/Cu(Ⅱ) ≥ 50), while Fe release is promoted, facilitating further reactions with NOM-Cu(II) colloids to form Fe-NOM-Cu(II) colloids. HR-TEM and QCM-D experimental results indicated that NOM-Cu(II) colloids aggregated and formed a softer deposit layer on mineral surfaces at low C/Cu(II) ratios. Conversely, at high C/Cu(II) ratio, HA formed a dense adsorption layer on goethite, while Fe-NOM-Cu(II) colloids were observed in the liquid phase samples. In situ ATR-FTIR spectroscopy, ITC experiments, and theoretical calculations further demonstrated that the adsorption mechanism was not dominant at low C/Cu(II) ratios. Instead, the aggregation and deposition of colloids induced by goethite promote Cu(II) adsorption. At high C/Cu(II) ratio, the suppression of Cu(II) adsorption was attributed to the formation of a dense adsorption layer by free HA, which coordinated with goethite surfaces via carboxyl groups, occupying adsorption sites. Additionally, the high concentration of HA intensified the stability of colloids in solution. This research provides crucial insights into the interactions between NOM-Cu(II) colloid and environmental minerals, elucidating the molecular mechanisms influencing colloidal behavior on mineral surfaces, which is vital for understanding the geochemical cycling of heavy metals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2025.123562DOI Listing

Publication Analysis

Top Keywords

nom-cuii colloids
12
c/cuii ratios
12
c/cuⅡ ratios
12
colloids
11
adsorption
9
cuⅡ adsorption
8
ratios c/cuⅡ
8
fe-nom-cuii colloids
8
mineral surfaces
8
low c/cuii
8

Similar Publications

Background: Thyroid nodules (TNs) are frequent and often benign. Accurately differentiating between benign and malignant nodules is crucial for proper management. This research aims to use ultrasonography to examine TNs and identify possible risk factors in order to improve patient outcomes and diagnostic accuracy.

View Article and Find Full Text PDF

Construction of an Ag-functionalized structural color hydrogel sensor for colorimetric detection of glutathione.

Mikrochim Acta

September 2025

Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.

An Ag-functionalized structural color hydrogel (Ag-SCH) sensor is constructed for colorimetric detection of glutathione (GSH). The hydrogel is prepared by using the coordination of Ag and 1-vinylimidazole (1-VI) as cross-linking network. GSH acts as a competitive ligand to break the coordination between Ag and 1-VI, leading to the expansion and structural color change of the hydrogel.

View Article and Find Full Text PDF

Corrigendum to "Robotic manipulations of single cells using a large-volume piezoelectric micropipette with nanoliter precision" [Colloid. Surf. B Biointerfaces 256 (2025) 114972].

Colloids Surf B Biointerfaces

September 2025

Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Budapest, Hungary; Nanobiosensorics Group, Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary. Electronic address:

View Article and Find Full Text PDF

[A case report of delayed drug hypersensitivity reaction caused by inhalation and nasal spray of budesonide].

Zhonghua Jie He He Hu Xi Za Zhi

September 2025

Department of Allergy, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College

Inhaled and intranasal corticosteroids are widely used in the management of allergic respiratory diseases. Delayed drug hypersensitivity reactions to budesonide are a rare adverse drug reaction characterized by non-immunoglobulin E (IgE)-mediated clinical manifestations, including localized or systemic contact dermatitis, mucosal edema, and paradoxical worsening of pre-existing symptoms. However, such reactions are often underdiagnosed due to atypical presentations.

View Article and Find Full Text PDF

Room temperature ionic liquids show great promise as electrolytes in various technological applications, such as energy storage or electrotunable lubrication. These applications are particularly intriguing due to the specific behavior of ionic liquids in nanoconfinement. While previous research has been focused on optimizing the required characteristics through the selection of electrolyte properties, the contribution of confining material properties in these systems has been largely overlooked.

View Article and Find Full Text PDF