98%
921
2 minutes
20
Plant-derived wheat gluten peptides have an effective protective ability on industrial yeast against osmotic stress, the enhancement mechanism of osmotic tolerance in yeast by wheat gluten peptides addition was clarified in this study. Results showed that wheat gluten peptides addition increased the intracellular pH and trehalose levels of yeast under osmotic stress, compared to the control. Furthermore, peptides supplementation could regulate the antioxidant defense system and reduce the reactive oxygen species accumulation in yeast, including the increase of intracellular glutathione levels and the activities of antioxidant enzymes catalase and glutathione peroxidase. Metabolomic results indicated that the enhancement mechanism of wheat gluten peptides on yeast osmotic tolerance was related to the promotion of arginine and proline metabolism, pantothenate and coenzyme A biosynthesis, pyrimidine metabolism, and cysteine and methionine metabolism pathways. These results provide new insight into the enhancement mechanism of yeast stress tolerance by plant-derived peptides from a metabolic perspective.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2025.144092 | DOI Listing |
J Food Sci
September 2025
College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, China.
The growing consumer interest in functional and health-oriented foods prompted the incorporation of tartary buckwheat sprout flour (TBSF) into food production. The addition of TBSF enhanced the nutritional value of noodles. Research has shown that as the proportion of TBSF increased, both the water absorption rate and thermal stability of the dough improved, while formation time decreased and dough aging was inhibited.
View Article and Find Full Text PDFFood Chem X
August 2025
Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates.
Plant-based sausages (PBS) were formulated using heat-induced gelation to assess the influence of gluten in terms of structure, texture profile, rheology, digestibility, and shelf-life of PBS. The PBS formulation contained varying amounts of black chickpea flour, mung bean protein isolate, wheat gluten (WG), and fixed amounts of psyllium husk, water, and oil. WG significantly influenced the color.
View Article and Find Full Text PDFFood Chem
September 2025
College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China; The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China. Electronic address: wangpei@nj
Selectively hydrolyzed soy protein can enhance wheat-based product quality by modulating gluten thermal polymerization. This study examined the effects of β-conglycinin (7S) and glycinin hydrolysate (GH) on gluten rheological and thermal properties, particle size, Raman spectra, and microstructure during heating. Both 7S and GH improved gluten viscoelasticity, with their combined addition (7S/GH) showing the strongest effect.
View Article and Find Full Text PDFRev Clin Esp (Barc)
September 2025
Departamento de Enfermería, Hospital Universitario de Canarias, Tenerife, Spain. Electronic address:
Background: Non-celiac gluten sensitivity (NCGS) is characterized by a combination of intestinal and extra-intestinal symptoms triggered by gluten consumption, without evidence of celiac disease (CD) or wheat allergy (WA). Anemia, as an extra-intestinal manifestation, has been little studied in this context.
Main Objective: To synthesize the available evidence on the association between NCGS and anemia.
J Sci Food Agric
September 2025
Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padua, Padua, Italy.
Background: Solar radiation is a primary constraint in silvoarable agroforestry, with yield losses near the trees well documented in temperate climates. However, genetic variability for shade tolerance remains largely unexplored. This 2-year field trial investigated the impact of artificial shading - using nets that reduced photosynthetically active radiation (PAR) by moderate (-30%) and severe (-50%) levels relative to full sun - on the morpho-physiology and yield of common wheat.
View Article and Find Full Text PDF