98%
921
2 minutes
20
Background: Genetic distance metrics are crucial for understanding the evolutionary relationships and population structure of organisms. Progress in next-generation sequencing technology has given rise of genotyping data of thousands of individuals. The standard Variant Call Format (VCF) is widely used to store genomic variation information, but calculating genetic distance and constructing population phylogeny directly from large VCF files can be challenging. Moreover, the existing tools that implement such functions remain limited and have low performance in processing large-scale genotype data, especially in the area of memory efficiency.
Findings: To address these challenges, we introduce VCF2Dis, an ultra-fast and efficient tool that calculates pairwise genetic distance directly from large VCF files and then constructs distance-based population phylogeny using the ape package. Benchmarking results demonstrate the tool's efficiency, with rapid processing times, minimal memory usage (e.g., 0.37 GB for the complete analysis of 2,504 samples with 81.2 million variants), and high accuracy, even when handling datasets with millions of variants from thousands of individuals. Its straightforward command-line interface, compatibility with downstream phylogenetic analysis tools (e.g., MEGA, Phylip, and FastTree), and support for multithreading make it a valuable tool for researchers studying population relationships. These advantages meaning VCF2Dis has already been widely utilized in many published genomic studies.
Conclusion: We present VCF2Dis, a straightforward and efficient tool for calculating genetic distance and constructing population phylogeny directly from large-scale genotype data. VCF2Dis has been widely applied, facilitating the exploration of population relationship in extensive genome sequencing studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11970368 | PMC |
http://dx.doi.org/10.1093/gigascience/giaf032 | DOI Listing |
Protoplasma
September 2025
Vavilov Institute of General Genetics RAS, Moscow, Russia.
Large interstitial telomeric regions are considered remnants and markers of chromosomal rearrangements or a result of several suggested molecular mechanisms of telomere repeats accumulation. More rare are cases when large interstitial repeats are found not close to, but at a distance from the centromere. However, synapsis, recombination, and effects on chromatin near these regions during meiotic prophase I have not been sufficiently studied.
View Article and Find Full Text PDFAnn Bot
September 2025
Royal Botanic Gardens, Kew, Richmond, Research department, Surrey, TW9 3AE, UK.
Background And Aims: Crop wild relatives (CWRs) are key resources for enhancing agricultural resilience, providing genetic traits that can improve pest resistance, abiotic stress tolerance, and nutritional composition in domesticated crops. Within the mustard family (Brassicaceae) this is especially significant in the Brassiceae tribe, which includes economically important genera for agriculture such as Brassica and Sinapis. However, while breeding programmes have historically focused on major crops within this tribe, the potential of their wild relatives, particularly for underutilised and minor crops, remains insufficiently explored.
View Article and Find Full Text PDFMol Biol Rep
September 2025
ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400061, India.
Background: Labeo fimbriatus (Bloch, 1795) is a medium-sized South Asian minor carp with ecological significance and emerging aquaculture potential, particularly in polyculture systems with Indian major carps. Despite its wide distribution, it remains underrepresented in phylogenetic studies, and limited genomic resources are available. Here, we report the complete mitochondrial genome sequence of L.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
We study how protein condensates respond to a site of active RNA transcription (i.e., a gene promoter) due to electrostatic protein-RNA interactions.
View Article and Find Full Text PDFInt J Womens Health
September 2025
Department of Medical College, Nankai University, Tianjin, People's Republic of China.
Purpose: Emerging evidence suggests that an abnormal endometrial microbiota may be a potential factor contributing to recurrent pregnancy loss (RPL). This study aimed to characterize the endometrial microbiota in patients with RPL and to explore its association with miscarriage.
Patients And Methods: Based on specific inclusion and exclusion criteria, EndoMetrial Microbiome Assay (EMMA) data from women attending clinics were collected and categorized into RPL and control groups according to their miscarriage history.