A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Photoluminescent delocalized excitons in donor polymers facilitate efficient charge generation for high-performance organic photovoltaics. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Efficient delocalization of photo-generated excitons is a key to improving the charge-separation efficiencies in state-of-the-art organic photovoltaic (OPV) absorber. While the delocalization in non-fullerene acceptors has been widely studied, we expand the scope by studying the properties of the conjugated polymer donor D18 on both the material and device levels. Combining optical spectroscopy, X-ray diffraction, and simulation, we show that D18 exhibits stronger π-π interactions and interchain packing compared to classic donor polymers, as well as higher external photoluminescence quantum efficiency (~26%). Using picosecond transient absorption spectroscopy and streak camera photoluminescence measurements, we show that the initial D18 excitons form delocalized intermediates, which decay radiatively with high efficiency in neat films. In single-component OPV cells based on D18, these intermediate excitations can be harvested with an internal quantum efficiency >30%, while in blends with acceptor Y6 they provide a pathway to free charge generation that partially bypasses performance-limiting charge-transfer states at the D18:Y6 interface. Our study demonstrates that donor polymers can be further optimized using similar design strategies that have been successful for non-fullerene acceptors, opening the door to even higher OPV efficiencies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968943PMC
http://dx.doi.org/10.1038/s41467-025-58352-xDOI Listing

Publication Analysis

Top Keywords

donor polymers
12
charge generation
8
non-fullerene acceptors
8
quantum efficiency
8
photoluminescent delocalized
4
delocalized excitons
4
donor
4
excitons donor
4
polymers facilitate
4
facilitate efficient
4

Similar Publications