98%
921
2 minutes
20
In this work, we propose a novel strategy of introducing luminescent acridine units for central nuclear substitution in quinoxaline-based acceptor molecules (named AQx-o-Ac and AQx-m-Ac) to enhance their photoluminescence quantum yields (PLQY), which can effectively improve the electroluminescent quantum efficiency (EQE) of OSCs and thereby suppress ΔE. In addition, the substituted acridine unit accelerates molecular aggregation and optimizes molecular crystallization, effectively alleviating the static disorder of acceptor molecules and facilitating charge extraction and transport in OSCs. As a result, the PM6:AQx-m-Ac binary OSCs achieve an excellent PCE of 18.64% with an exceptionally low ΔE of 0.166 eV. To the best of our knowledge, a ΔE of 0.166 eV represents the lowest value reported for OSCs achieving PCEs over 18 %. Finally, the acceptor AQx-m-Ac is incorporated into PM6:eC9 blend as the third component, and the optimal ternary device produces a superior PCE of 20.28%. This work highlights the potential of promoting luminescence for suppressing nonradiative energy loss and charts a viable path for upcoming breakthrough in high-efficiency organic photovoltaics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202500129 | DOI Listing |
Commun Chem
September 2025
Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Dresden, Germany.
Purely organic materials showing efficient and persistent emission via room temperature phosphorescence (RTP) allow the design of minimalistic yet powerful technological solutions for sensing, bioimaging, information storage, and safety applications using the photonic design principle of digital luminescence. Although several promising materials exist, a deep understanding of the underlying structure-property relationship and, thus, development of rational design strategies are widely missing. Some of the best purely organic emitters follow the donor-acceptor-donor design motif.
View Article and Find Full Text PDFJ Phys Chem A
September 2025
Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore, Bengaluru560012, India.
The microwave spectrum of the complex formed between 1-fluoronaphthalene and HO has been recorded using a chirped pulse Fourier transform microwave spectrometer within the frequency range of 2.0 to 8.0 GHz, with neon as the carrier gas.
View Article and Find Full Text PDFOrg Lett
September 2025
Istanbul Technical University, Chemistry Department, Maslak, Istanbul 34469, Turkey.
A donor-acceptor-donor type π-conjugated small molecule, , having an oligoether-functionalized azaisoindigo unit as an acceptor and triphenylamine units as donor groups was designed and synthesized. Its opto-electrochemical properties and charge transport applications were investigated. demonstrated p-type transport behavior with a maximum carrier mobility of 0.
View Article and Find Full Text PDFSmall
September 2025
Key Laboratory of Nanosystem and Hierarchical Fabrication of Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China.
All-small-molecule organic solar cells (ASM-OSCs) with completely definite chemical structure are an ideal model to establish the relationship between molecular structure and device performance via aggregates. The end-capped acceptor unit is of great significance in the regulation of aggregates by essential molecular interactions. However, the successful end-capped acceptor units for small-molecule donors have been rather poorly studied and only focused on the alkyl substituted rhodamine, limiting further development for ASM-OSCs.
View Article and Find Full Text PDFRSC Adv
September 2025
Departament de Química, Universitat Autònoma de Barcelona Bellaterra 08193 Barcelona Spain
Mammalian ALOX15 are allosteric enzymes but the mechanism of allosteric regulation remains a matter of discussion. Octyl (-(5-(1-indol-2-yl)-2-methoxyphenyl)sulfamoyl)carbamate inhibits the linoleate oxygenase activity of ALOX15 at nanomolar concentrations, but oxygenation of arachidonic acid is hardly affected. The mechanism of substrate selective inhibition suggests inter-monomer communication within the allosteric ALOX15 dimer complex, in which the inhibitor binding to monomer A induces conformational alterations in the structure of the active site of monomer B.
View Article and Find Full Text PDF