Designing Cellulose Triacetate-Based Universal Binder for High-Voltage Sodium-Ion Battery Cathodes with Enhanced Ionic Conductivity and Binding Strength.

Adv Mater

Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, CAS Key Laboratory of Mechanical Behavior and Design of Materials (LMBD), School of Engineering Science, University of Science and Technology of C

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Binders play a pivotal role in the performance of sodium-ion battery (SIB) cathodes, but traditional binders often struggle to balance broad compatibility, high ionic conductivity, superior binding strength, and environmental sustainability. In this study, a universal cellulose triacetate (TAC)-based binder (TAC-MMT) composed of TAC and natural montmorillonite (MMT) is designed to facilitate rapid Na transport pathways and establish a robust hydrogen-bonding network. This innovative TAC-MMT binder features a unique chemical structure that achieves high ionic conductivity through a self-enrichment and fast-transport mechanism, while its superior binding strength is attributed to hydrogen-bonding crosslinks between proton acceptors (C═O) in TAC and proton donors (-OH) in MMT. More importantly, the outstanding solubility and film-forming properties of TAC-MMT contribute to stable electrode protection and broad compatibility with high-voltage SIB cathodes. Benefiting from these advantages, the NaV(PO)OF (NVPOF) electrodes with the TAC-MMT binder demonstrate exceptional performance, including a high capacity retention of 95.2% over 500 cycles at 5C and a rapid rate response of up to 15C. The versatility of the TAC-MMT binder is further confirmed with high-voltage NaNiFeMnO and Na[MnFeTi]O cathodes. This study highlights the potential of biomass-based binders as a sustainable and effective solution for advancing high-performance sodium-ion batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202501531DOI Listing

Publication Analysis

Top Keywords

ionic conductivity
12
binding strength
12
tac-mmt binder
12
sodium-ion battery
8
sib cathodes
8
broad compatibility
8
high ionic
8
superior binding
8
binder
5
tac-mmt
5

Similar Publications

Ultrafast Al⁺ Conduction through Cooperative Bonding in Disordered Polycarbonate-Polyether Electrolytes.

Small Methods

September 2025

Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics, Science and Technology, Hebei University, Baoding, 071002, China.

As a new generation of high-energy-density energy storage system, solid-state aluminum-ion batteries have attracted much attention. Nowadays polyethylene oxide (PEO)-based electrolytes have been initially applied to Lithium-ion batteries due to their flexible processing and good interfacial compatibility, their application in aluminum-ion batteries still faces problems. To overcome the limitations in aluminum-ion batteries-specifically, strong Al coordination suppressing ion dissociation, high room-temperature crystallinity, and inadequate mechanical strength-this study develops a blended polymer electrolyte (BPE) of polypropylene carbonate (PPC) and PEO.

View Article and Find Full Text PDF

Localized Gradient Conductivity Enabled Ultrasensitive Flexible Tactile Sensors with Ultrawide Linearity Range.

Adv Mater

September 2025

Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, China.

The high sensitivity and wide linearity are crucial for flexible tactile sensors in adapting to diverse application scenarios with high accuracy and reliability. However, conventional optimization strategies of constructing microstructures suffer from the mutual restriction between the high sensitivity and wide linearity. Herein, a novel design of localized gradient conductivity (LGC) with partly covered low-conductivity (low-σ) carbon/Polydimethylsiloxane layer on high-conductivity (high-σ) silver nanowires film upon the micro-dome structure is proposed.

View Article and Find Full Text PDF

Ionic conductivity mechanisms in PEO-NaPF electrolytes.

Nanoscale

September 2025

Polymer Electrolytes and Materials Group (PEMG), Department of Physics, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342030, India.

Understanding ion transport mechanisms in sodium ion-based polymer electrolytes is critical, considering the emergence of sodium ion electrolyte technologies as sustainable alternatives to lithium-based systems. In this paper, we employ all-atom molecular dynamics simulations to investigate the salt concentration () effects on ionic conductivity () mechanisms in sodium hexafluorophosphate (NaPF) in polyethylene oxide (PEO) electrolytes. Sodium ions exhibit ion solvation shell characteristics comparable to those of lithium-based polymer electrolytes, with similar anion coordination but more populated oxygen coordination in the polymer matrix.

View Article and Find Full Text PDF

Surfactants adsorb at interfaces and reduce the interfacial tension. In technical applications, they are typically used as complex mixtures rather than monodisperse systems. These mixtures often include ionic and non-ionic surfactants, with the non-ionic components comprising various monodisperse species.

View Article and Find Full Text PDF

High entropy electrolytes show great potential in the design of next generation batteries. Demonstrating how salt components of high entropy electrolytes influence the charge storage performance of batteries is essential in the tuning and design of such advanced electrolytes. This study investigates the transport and interfacial properties for lithium hexafluorophosphate (LiPF) in ethylene carbonate and dimethyl carbonate (EC/DMC) solvent with commonly used additives for high entropy electrolytes (LiTFSI, LiDFOB, and LiNO).

View Article and Find Full Text PDF