Acoustic modes in M67 cluster stars trace deepening convective envelopes.

Nature

Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, Sydney, New South Wales, Australia.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Acoustic oscillations in stars are sensitive to stellar interiors. Frequency differences between overtone modes-large separations-probe stellar density, whereas differences between low-degree modes-small separations-probe the sound-speed gradient in the energy-generating core of main-sequence Sun-like stars, and hence their ages. At later phases of stellar evolution, characterized by inert cores, small separations are believed to lose much of their power to probe deep interiors and become proportional to large separations. Here we present evidence of a rapidly evolving convective zone as stars evolve from the subgiant phase into red giants. By measuring acoustic oscillations in 27 stars from the open cluster M67, we observe deviations of proportionality between small and large separations, which are caused by the influence of the bottom of the convective envelope. These deviations become apparent as the convective envelope penetrates deep into the star during subgiant and red giant evolutions, eventually entering an ultradeep regime that leads to the red-giant-branch luminosity bump. The tight sequence of cluster stars, free of large spreads in ages and fundamental properties, is essential for revealing the connection between the observed small separations and the chemical discontinuities occurring at the bottom of the convective envelope. We use this sequence to show that combining large and small separations can improve estimations of the masses and ages of field stars well after the main sequence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11981917PMC
http://dx.doi.org/10.1038/s41586-025-08760-2DOI Listing

Publication Analysis

Top Keywords

small separations
12
convective envelope
12
cluster stars
8
acoustic oscillations
8
oscillations stars
8
large separations
8
bottom convective
8
stars
7
convective
5
separations
5

Similar Publications

Limited vascularization and ischemia are major contributors to the chronicity of wounds, such as ulcers and traumatic injuries, which impose significant medical, social, and economic burdens. These challenges are particularly pronounced in patients with spinal cord injury (SCI), a disabling condition associated with vascular dysfunction, infections, and impaired peripheral circulation, complicating the treatment of pressure injuries (PIs) and the success of reconstructive procedures like grafts and flaps. Regenerative medicine aims to address these issues by identifying effective cellular therapies to restore vascular beds.

View Article and Find Full Text PDF

Introduction: Machine learning studies sometimes include a high number of predictors relative to the number of training cases. This increases the risk of overfitting and poor generalizability. A recent study hypothesized that between-trial heterogeneity precluded generalizable outcome prediction in schizophrenia from being achieved.

View Article and Find Full Text PDF

Live-cell imaging of intracellular proteins enables real-time observation of protein dynamics under near-physiological conditions, providing pivotal insights for both fundamental life science research and medical applications. However, due to limitations such as poor probe permeability and cytotoxicity associated with conventional antibody-based or genetically encoded labeling techniques, live-cell imaging remains a significant challenging. To address these limitations, here in this study, we developed and rigorously validated a novel aptamer-based fluorescent probe for real-time imaging of NEK9 kinase in living cells.

View Article and Find Full Text PDF

All-solid-state batteries (ASSBs), equipped with highly ion-conductive sulfide solid electrolytes and utilizing lithium plating/stripping as anode electrochemistry, suffer from 1) chemical vulnerability of the electrolytes with lithium and 2) physical growth of lithium to penetrate the electrolytes. By employing an ordered mesoporous graphitic carbon (OMGC) framework between a sulfide electrolyte layer and a copper current collector in ASSB, the concerns by are addressed 1) minimizing the chemically vulnerable interface (CVI) between electric conductor and solid electrolyte, and 2) allowing lithium ingrowth toward the porous structure via Coble creep, a diffusional deformation mechanism of lithium metal along the lithium-carbon interface. The void volume of the framework is fully filled with lithium metal, despite ionic pathways not being provided separately, even without additional lithiophiles, when an enough amount of lithium is allowed to be plated.

View Article and Find Full Text PDF

Membrane technology for gas separation is more efficient and energy-saving than thermally driven processes, including cryogenic distillation and adsorption. Metal-organic framework (MOF) and related glass membranes hold great potential for precise gas separation, but it remains challenging to construct ultrathin MOF glass membranes and optimize their transport pathways. In this study, a strategy based on vapor-linker deposition and melt-quenching is reported to design ultrathin zeolitic imidazolate framework (ZIF) glass membranes with node-missing defect passageways.

View Article and Find Full Text PDF