Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Aims: While metformin has been shown to alleviate dextran sulfate sodium (DSS)-induced colitis in murine models, the mechanisms underlying its anti-inflammatory and barrier-restorative effects remain poorly defined. This study investigates the role of acetyl coenzyme A (acetyl-CoA)-dependent STAT3 acetylation in mediating metformin's therapeutic actions, with the goal of identifying novel molecular targets for ulcerative colitis (UC) treatment.

Methods: Acute colitis was induced in wild-type C57BL/6J mice via oral DSS administration, followed by daily intraperitoneal metformin treatment. Intestinal inflammation, barrier integrity, and STAT3 signaling were assessed using histopathology, western blotting, and transmission electron microscopy. To validate STAT3's critical role in colitis pathogenesis, intestinal epithelium-specific STAT3 knockout mice were employed, enabling targeted investigation of STAT3 acetylation and its regulation by metformin.

Results: Metformin attenuated DSS-induced colitis by suppressing pro-inflammatory cytokines (TNF-α, IL-6, IL-1β), reducing epithelial apoptosis, and restoring tight junction proteins (ZO-1, E-cadherin, Occludin). Mechanistically, metformin reduced acetyl-CoA levels, thereby inhibiting STAT3 acetylation and downstream pathway activation. The pivotal role of STAT3 in colitis progression was confirmed using STAT3 knockout mice, as the therapeutic effects of metformin were significantly diminished in the absence of STAT3-mediated inflammatory signaling.

Conclusion: This study identifies acetyl-CoA-dependent STAT3 acetylation as a novel mechanism through which metformin ameliorates intestinal inflammation and barrier dysfunction. These findings not only advance our understanding of metformin's immunomodulatory properties but also highlight the therapeutic potential of targeting acetyl-CoA metabolism in UC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jare.2025.03.058DOI Listing

Publication Analysis

Top Keywords

stat3 acetylation
20
stat3
9
dss-induced colitis
8
acetyl-coa-dependent stat3
8
intestinal inflammation
8
inflammation barrier
8
stat3 knockout
8
knockout mice
8
metformin
7
colitis
7

Similar Publications

Diabetes and viral hepatitis, particularly hepatitis B (HBV) and hepatitis C (HCV), are significant global health burdens with complex interconnections. This review discusses the molecular mechanisms linking viral hepatitis to diabetes, focusing on inflammatory pathways, oxidative stress, and epigenetic modifications. Key findings highlight the role of STAT3 in promoting insulin resistance and β-cell apoptosis, the impact of ER stress and NOX-mediated oxidative stress on metabolic dysfunction, and the influence of epigenetic changes such as DNA methylation and histone acetylation on glucose homeostasis.

View Article and Find Full Text PDF

Signal transducer and activator of transcription 3 (Stat3), a critical transcription factor, plays an essential role in cellular processes such as proliferation, development, and differentiation. It also significantly contributes to the pathogenesis of cardiovascular diseases and various cancers, including breast cancer, pancreatic cancer, and renal cell carcinoma. The functional dynamics of Stat3 are intricately regulated by post-translational modifications (PTMs) such as phosphorylation, sulfenylation, acetylation, sulfhydrylation, and SUMOylation.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is one of the most aggressive forms of brain cancer, characterized by rapid growth and resistance to conventional therapies. This study investigates the role of HADHA, a key enzyme in fatty acid β-oxidation, in the progression of GBM. we show that the overexpression of HADHA in GBM correlates with a poor prognosis in patients and plays a role in promoting tumor growth and invasion.

View Article and Find Full Text PDF

Intervertebral disc degeneration (IVDD), driven by nucleus pulposus cell (NPCs) apoptosis, extracellular matrix (ECM) dyshomeostasis, and inflammation, lacks effective therapies. Lentinan (LNT), a polysaccharide from lentinula edodes, has anti-inflammatory and antioxidant properties. However, the role and molecular mechanisms of LNT in IVDD are unclear.

View Article and Find Full Text PDF

This study investigated the role of ferroptosis in vascular cell senescence induced by sepsis and elucidated the regulatory mechanism of the SIRT4-STAT3-ACSL4 signaling axis. The results showed that ferroptosis was significantly activated in pulmonary vascular endothelial cells under septic conditions, leading to the promotion of cellular senescence and exacerbation of lung injury. Inhibition of ferroptosis effectively attenuated cellular senescence and alleviated sepsis-associated lung damage.

View Article and Find Full Text PDF