Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study aimed to evaluate iodinated nanoparticles based on Visipaque for the detection of macrophages in atherosclerotic plaques using computed tomography (CT). The nanoparticles were developed using Visipaque and hydrophobic groups to enhance the macrophages in atherosclerotic lesions. The nanoparticles were measured using NanoSight, and their cellular toxicity was evaluated using the cell counting kit-8 assay. RAW264.7 macrophages were used to detect the cellular uptake of the nanoparticles. Aortic atherosclerotic plaques were induced in New Zealand rabbits ( = 6) by combining a high-cholesterol diet and aortic injury. The noninjured rabbits ( = 4) were fed a normal chow diet and used as controls. CT scans before and 2 h after Visipaque injection, followed by nanoparticle imaging 1 h later. Macrophages were counted using immunohistology with an anti-CD68 monoclonal antibody. The diameter of the nanoparticle agent was approximately 150 mM, and 90% varied broadly between 69 and 248 nm. In vitro experiments demonstrated that the nanoparticles had low cellular toxicity and were effectively endocytosed by macrophages in a time- and dose-dependent manner. In vivo, CT imaging demonstrated that the nanoparticle density was higher in the aortic wall plaques in atherosclerotic rabbits than in control rabbits. The histologic staining confirmed successful atherosclerosis modeling in rabbits and abundant macrophage infiltration in the aortic wall, preferentially taking up the nanoparticles. In conclusion, this study suggests that the novel nanoparticles could be a promising, effective contrast agent for the detection of macrophages in atherosclerotic plaques using CT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11948145PMC
http://dx.doi.org/10.1021/acsomega.4c09170DOI Listing

Publication Analysis

Top Keywords

macrophages atherosclerotic
16
detection macrophages
12
atherosclerotic plaques
12
atherosclerotic lesions
8
contrast agent
8
computed tomography
8
cellular toxicity
8
aortic wall
8
macrophages
7
nanoparticles
7

Similar Publications

Atherosclerosis (AS) is a chronic inflammatory disease driven by endothelial dysfunction, vascular smooth muscle cell proliferation, and insufficient resolution of inflammation. Nitric oxide (NO) plays a crucial role in vascular homeostasis by promoting endothelial cell proliferation, maintaining endothelial integrity, suppressing smooth muscle cell hyperplasia, and exerting potent anti-inflammatory effects. However, clinical application of NO is hindered by its short half-life, lack of targeting, and uncontrolled release.

View Article and Find Full Text PDF

Introduction: is a spiral-shaped Gram-negative, enterohepatic bacterium classified as a conditional pathogen (pathogenicity group 2). It is known to cause bacteremia and a variety of other diseases in humans. In particular, has been shown to impair intracellular cholesterol metabolism when interacting with macrophages, leading to foam cell formation.

View Article and Find Full Text PDF

Modulating macrophage function is an effective strategy for treating atherosclerosis. Our previous research shows that tilianin (Til) effectively regulates macrophage polarization. This immune modulation positions Til as a promising plant-derived therapeutic agent with potential for atherosclerosis treatment and management.

View Article and Find Full Text PDF

Atherosclerosis (AS) is a significant contributor to cardiovascular events. Recent studies have demonstrated that ferroptosis of foam cells is a significant driver of AS. Nevertheless, insights into the precise antiferroptosis therapies remain limited.

View Article and Find Full Text PDF

We applied micro-computed tomography, high-resolution cryo-scanning electron microscopy (SEM) combined with cathodoluminescence, and cryo-focused ion beam Milling-SEM to perform three-dimensional imaging of human atherosclerotic tissues with tens of nanometers resolution, under hydrated, near-native conditions with minimal sample processing. The same technology was applied to cultured macrophages exposed to cholesterol crystals, and the observations made on the macrophages were compared to those made on the pathological tissue. We observed that cholesterol crystal digestion and, eventually, cholesterol crystal clearance occurs in the advanced human plaques through cellular processing.

View Article and Find Full Text PDF