Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

An estimated 10-20 million people worldwide are infected with the deltaretrovirus human T-cell leukemia virus type 1 (HTLV-1). Although most infected individuals remain asymptomatic, some progress to develop the fatal and debilitating disease adult T-cell leukemia/lymphoma (ATLL) or HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP) or develop a plethora of other inflammatory disorders. In addition, HTLV-1 infection is associated with immunosuppression and a shorter lifespan. Although a protective role for neutralizing antibodies has been suggested, the role of non-neutralizing antibody-dependent cell-mediated cytotoxicity (ADCC) remains unclear, largely because an assay to measure this response has not been established. Here, we developed a high-throughput flow cytometry-based assay system to measure HTLV-1 envelope-specific ADCC. We used a natural killer cell-resistant T-lymphoblastoid cell line stably expressing the green fluorescent protein GFP to construct a target cell line expressing HTLV-1 envelope protein and using monoclonal antibodies and plasma samples from HTLV-infected or uninfected individuals, validating the specificity and sensitivity of the assay. We detected high ADCC activity in samples from HTLV-1-infected humans. In the plasma of experimentally infected macaques, ADCC activity was measured and a correlation between ADCC activity and HTLV-1 envelope antibody titers was observed. Further, we observed a significant increase in ADCC titer over time; as HTLV-1 infection persists, a higher ADCC response is generated, potentially influencing disease outcome. ADCC titer in HTLV-1-infected macaques also positively correlated with FLT3LG, IL-17F, CD4 T cells, and lymphocytes but negatively correlated with monocyte frequency and classical monocyte frequency. In conclusion, these findings detail the generation of a cell line that enabled development of an HTLV-specific ADCC assay, which can be employed in large clinical studies as well as research involving humans or non-human primates.IMPORTANCEThis approach measures human T-cell leukemia virus (HTLV)-specific envelope antibody-dependent cell-mediated cytotoxicity responses, provides a critical tool to investigate the role of envelope-specific binding antibodies in the immune control of HTLV infection and pathogenesis, and may help guide the development of both therapeutic and preventative vaccine approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12090781PMC
http://dx.doi.org/10.1128/jvi.02268-24DOI Listing

Publication Analysis

Top Keywords

human t-cell
12
t-cell leukemia
12
antibody-dependent cell-mediated
12
cell-mediated cytotoxicity
12
adcc activity
12
adcc
10
cytotoxicity adcc
8
adcc assay
8
envelope protein
8
leukemia virus
8

Similar Publications

Background And Objectives: Neuroimaging findings in immune effector cell-associated neurotoxicity syndrome (ICANS) have not been systematically described. We created the chimeric antigen receptor (CAR) T-cell Neurotoxicity Imaging Virtual Archive Library (CARNIVAL), a centralized imaging database for children and young adults receiving CAR T-cell therapy. Objectives of this study were to (1) characterize neuroimaging findings associated with ICANS and (2) determine whether specific ICANS-related neuroimaging findings are associated with individual neurologic symptoms.

View Article and Find Full Text PDF

T-cell therapies have proven to be a promising treatment option for cancer patients in recent years, especially in the case of chimeric antigen receptor (CAR)-T cell therapy. However, the therapy is associated with insufficient activation of T cells or poor persistence in the patient's body, which leads to incomplete elimination of cancer cells, recurrence, and genotoxicity. By extracting the splice element of PD-1 pre-mRNA using biology based on CRISPR/dCas13 in this study, our ultimate goal is to overcome the above-mentioned challenges in the future.

View Article and Find Full Text PDF

Large B cell lymphoma microenvironment archetype profiles.

Cancer Cell

July 2025

Department of Lymphoma and Myeloma, University of Texas (UT) MD Anderson Cancer Center, Houston, TX, USA; Lymphoid Malignancies Program, UT MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX, USA. Electronic address: mgreen5@mdander

Large B cell lymphomas (LBCL) are clinically and biologically heterogeneous lymphoid malignancies with complex microenvironments that are central to disease etiology. Here, we have employed single-nucleus multiome profiling of 232 tumor and control biopsies to characterize diverse cell types and subsets that are present in LBCL tumors, effectively capturing the lymphoid, myeloid, and non-hematopoietic cell compartments. Cell subsets co-occurred in stereotypical lymphoma microenvironment archetype profiles (LymphoMAPs) defined by; (1) a sparsity of T cells and high frequencies of cancer-associated fibroblasts and tumor-associated macrophages (FMAC); (2) lymph node architectural cell types with naive and memory T cells (LN); or (3) activated macrophages and exhausted CD8 T cells (TEX).

View Article and Find Full Text PDF

Antibody-based therapies have revolutionized cancer treatment but have several limitations. These include: down-regulation of the target antigen; mutation of the target epitope; or in the case of antibody drug conjugates (ADCs), resistance to the chemotherapy warhead. Since TROP2-targeted therapy with ADCs yields responses in TROP2+ solid tumors but lacks the durability observed with other immunotherapy-based approaches, we developed novel TROP2-targeting chimeric antigen receptor (CAR) T cells as an alternative.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDA) is defined by a myeloid-enriched microenvironment and has shown remarkable resistance to immune checkpoint blockade (e.g., PD-1 and CTLA-4).

View Article and Find Full Text PDF