98%
921
2 minutes
20
In the era of noisy intermediate-scale quantum (NISQ) computing, the limited connectivity between qubits is one of the common physical limitations faced by current quantum computing devices. Quantum circuit mapping methods transform quantum circuits into equivalent circuits that satisfy physical connectivity constraints by remapping logical qubits, making them executable. The optimization problem of quantum circuit mapping has NP-hard computational complexity, and existing heuristic mapping algorithms still have significant potential for optimization in terms of the number of quantum gates generated. To reduce the number of SWAP gates inserted during mapping, the solution space of the mapping problem is represented as a tree structure, and the mapping process is equivalent to traversing this tree structure. To effectively and efficiently complete the search process, a beam search framework (BSF) is proposed for solving quantum circuit mapping. By iteratively selecting, expanding, and making decisions, high-quality target circuits are generated. Experimental results show that this method can significantly reduce the number of inserted SWAP gates on medium to large circuits, achieving an average reduction of 44% compared to baseline methods, and is applicable to circuits of various sizes and complexities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941456 | PMC |
http://dx.doi.org/10.3390/e27030232 | DOI Listing |
Phys Rev Lett
August 2025
Southern University of Science and Technology, Department of Physics, State Key Laboratory of Quantum Functional Materials, and Guangdong Basic Research Center of Excellence for Quantum Science, Shenzhen 518055, China.
Quantum computing is expected to provide an exponential speedup in machine learning. However, optimizing the data loading process, commonly referred to as "quantum data embedding," to maximize classification performance remains a critical challenge. In this Letter, we propose a neural quantum embedding (NQE) technique based on deterministic quantum computation with one qubit (DQC1).
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Institut für Theoretische Physik, Universität zu Köln, Zülpicher Straße 77, 50937 Cologne, Germany.
Monitored quantum circuits have attracted significant interest as an example of synthetic quantum matter, intrinsically defined by their quantum information content. Here, we propose a multipartite entanglement perspective on monitored phases through the lens of quantum Fisher information. Our findings reveal that unstructured monitored random circuits fail to exhibit divergent multipartite entanglement even at criticality, highlighting their departure from standard quantum critical behavior.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Washington University, Physics Department, Saint Louis, Missouri 63130, USA.
Single electrons confined to a free neon surface and manipulated through the circuit quantum electrodynamics architecture is a promising novel quantum computing platform. Understanding the exact physical nature of the electron-on-neon (eNe) charge states is important for realizing this platform's potential for quantum technologies. We investigate how resonator trench depth and substrate surface properties influence the formation of eNe charge states and their coupling to microwave resonators.
View Article and Find Full Text PDFACS Nano
September 2025
School of Physics and Key Lab of Quantum Materials and Devices of the Ministry of Education, Southeast University, Nanjing 211189, P. R. China.
While hexagonal boron nitride (hBN) hosts promising room-temperature quantum emitters for hybrid quantum photonic circuits, scalable deterministic integration and insufficient brightness alongside low photon collection and coupling efficiencies remain unresolved challenges. We present a femtosecond laser nanoengineering platform that enables the site-specific generation of hBN single-photon source (SPS) arrays. First-principles density functional theory (DFT) calculations and polarization-resolved spectroscopy confirm the atomic origin of emission as interfacial defects at hBN/SiO heterojunctions.
View Article and Find Full Text PDFSci Adv
September 2025
James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK.
Narrow-linewidth lasers are essential for coherent optical applications, including communications, metrology, and sensing. Although compact semiconductor lasers with narrow linewidths have been demonstrated, achieving high spectral purity generally necessitates passive external cavities based on photonic integrated circuits. This study presents a theoretical and experimental demonstration of a monolithic optical injection locking topological interface state extended (MOIL-TISE) laser.
View Article and Find Full Text PDF