Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Objective: To compare the performance of machine learning and logistic regression algorithms in predicting emergence delirium (ED) in elderly patients.
Methods: A prospective study was carried out in a Chinese teaching tertiary hospital and collected the details of 1045 patients who underwent noncardiac surgery with general anesthesia. Characteristic variables related to ED were selected by least absolute shrinkage and selection operator (LASSO). Finally, seven machine learning models (gradient boosting machine, extreme gradient boosting, light gradient boosting machine, support vector machine, decision tree, neural network, and random forest) and logistic regression were used in the training set, and the predictive performance of the models was validated in the test set.
Results: ED was identified in 316 (30.2%) patients. The logistic regression model performed better than the machine learning models (area under the curve [AUC] of 0.790, 95% confidence interval [CI] 0.736-0.843). Besides, the calibration curve indicated good consistency between predicted and actual ED probabilities, and decision curve analysis demonstrated that the logistic regression model could bring clinical benefits.
Conclusion: The optimal application of logistic regression can provide rapid and efficient risk prediction of ED for medical workers so that reasonable prevention and treatment measures can be taken.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijmedinf.2025.105888 | DOI Listing |