Nano-Encapsulated Coumarin Derivative, CS-QM2 Inhibits Neoplasm Growth: Experimented in Zebrafish Model.

J Biochem Mol Toxicol

Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cancer remains a significant global health challenge with limited therapeutic success, prompting the need for innovative treatment strategies. This study investigates the anticancer potential of nano-encapsulated metal derivatives (CS-QM2) using a zebrafish model with chemically induced cellular neoplasia. Characterization of CS-QM2 nanoparticles revealed successful synthesis with a high entrapment efficiency and enhanced drug release under acidic conditions. Zebrafish embryos exposed to 7,12-Dimethylbenz[a]anthracene (DMBA) exhibited significant malformations, macrophage accumulation, and abnormal tissue growth, which were markedly reduced by CS-QM2 treatment. CS-QM2 significantly increases intracellular ROS, resulting in higher LPO and induces apoptosis in neoplasm tissues. Furthermore, CS-QM2 treatment alters the tumor microenvironment, reducing macrophage accumulation by decreasing neutral lipid droplets, disrupting TAM metabolic support and limiting their protumorigenic activities. Biochemical assays demonstrated restored activities of antioxidant enzymes SOD, CAT, and GSH. Gene expression analysis showed upregulation of apoptosis and tumor suppressor genes (cas3, p53) and downregulation of inflammatory genes (cox-2, nf-kb). Histological assessment and SEM analysis confirmed reduced neoplasm occurrence and tissue abnormalities. These findings suggest that CS-QM2 nanoparticles effectively inhibit neoplasm growth and modulate the tumor microenvironment through oxidative stress induction and gene expression regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbt.70239DOI Listing

Publication Analysis

Top Keywords

neoplasm growth
8
zebrafish model
8
cs-qm2 nanoparticles
8
macrophage accumulation
8
cs-qm2 treatment
8
tumor microenvironment
8
gene expression
8
cs-qm2
7
nano-encapsulated coumarin
4
coumarin derivative
4

Similar Publications

Secreted frizzled-related protein 4 (sFRP4) plays a fundamental role in the regulation of Wnt signalling, which is crucial for cellular proliferation and differentiation. The sFRP4 has garnered significant interest as a therapeutic target for metabolic diseases and cancer due to its mechanism of action. Although existing sFRP4 modulators show limited specificity and notable off-target effects, our study explores the potential of known bioactive compounds as more selective and less toxic alternatives.

View Article and Find Full Text PDF

Cervical cancer remains a significant cause of female mortality worldwide, primarily due to abnormal cell growth in the cervix. This study proposes an automated classification method to enhance detection accuracy and efficiency, addressing contrast and noise issues in traditional diagnostic approaches. The impact of image enhancement on classification performance is evaluated by comparing transfer learning-based Convolutional Neural Network (CNN) models trained on both original and enhanced images.

View Article and Find Full Text PDF

3-O-acetylrubiarbonol B preferentially targets EGFR and MET over rubiarbonol B to inhibit NSCLC cell growth.

PLoS One

September 2025

Department of Biomedicine, Health and Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan, Republic of Korea.

Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer-related deaths, remaining a significant challenge in terms of early detection, effective treatment, and improving patient survival rates. In this study, we investigated the anticancer mechanism of rubiarbonol B (Ru-B) and its derivative 3-O-acetylrubiarbonol B (ARu-B), a pentacyclic terpenoid in gefitinib (GEF)-sensitive and -resistant NSCLC HCC827 cells. Concentration- and time-dependent cytotoxicity was observed for both Ru-B and ARu-B.

View Article and Find Full Text PDF

Background: Head and neck cancer (HNC) is a significant global health concern with rising incidence and mortality in certain regions. This study aimed to evaluate the global burden and temporal trends of HNC from 1990 to 2021 and to project its future burden through 2030.

Methods: Data were obtained from the Global Burden of Disease (GBD) 2021 study.

View Article and Find Full Text PDF

A Minimally Invasive Method for Generating a Syngeneic Orthotopic Mouse Model of Lung Cancer.

J Vis Exp

August 2025

Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa; Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa; Geminii, Inc.

Non-small cell lung cancer (NSCLC) continues to be the number one cause of cancer-related death for both women and men worldwide. More information needs to be gathered to understand the interactions between cancer cells, the immune system, the microenvironment within each tumor, and the host tissue to develop more effective treatment modalities. Reported here is a simple, repeatable method for inducing cancer within the mouse lung, allowing for the monitoring of tumor growth from early to late-stage disease.

View Article and Find Full Text PDF